【信息融合】BP神经网络和DS证据理论不确定性信息融合问题【含Matlab源码 2204期】

本文介绍了D-S证据理论在信息融合中的应用,通过Matlab源码展示了证据的直和组合规则。D-S理论用于处理不同传感器信息的不确定性融合,分析了信任函数的组合,并提供了部分源代码及其运行结果。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、 D-S证据理论及解释

证据理论由Dempster在1967年最初提出,并由他的学生Shafer改进推广使之成为符合有限离散领域中推理的形式,因此称为D-S理论。证据理论讨论一个“辨识框架”(Frame of Discernment)Θ,它是关于命题的相互独立的可能答案或假设的一个有限集合。按传统方法可以把Θ的幂集表示为2Θ,它是Θ的所有子集的集合。D-S证据理论对这个辨识框架进行运算,并提供计算幂集元素的逻辑,然后使用这些计算结果完成高和低的不确定性的计算工作。

定义1Θ为鉴别框架,由一完备的互不相容的陈述集合组成,Θ的幂集构成了命题集合。通过传感器信息得到的特征度量作为证据,并通过基本概率赋值函数对所有命题赋予一个可信度,基本概率赋值函数m则是满足下述两个条件的映射:2Θ→[0,1]。

(1)不可能事件基本概率数为0,即m(Φ)=0;
在这里插入图片描述
表示。它表示了既不信任A也不信任A¯¯¯的一种度量,可表示对不知道的度量。

1 证据理论在信息融合中的应用
定义3 假设Bel1和Bel2是相同的框架2Θ上的信任函数,具有基本概率赋值函数m1和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值