【LSSVM数据预测】灰狼算法优化LSSVM数据预测【含Matlab源码 433期】

本文介绍了灰狼优化算法优化线性最小二乘支持向量机(LSSVM)用于数据预测的方法。算法通过模拟狼群的行为来寻找最优解,包括参数初始化、种群个体计算、距离更新和位置更新等步骤。部分Matlab源码和2014a版本的运行结果被提及,同时引用了相关文献。
摘要由CSDN通过智能技术生成

在这里插入图片描述

⛄一、灰狼算法优化LSSVM简介

灰狼优化算法是一种新型的群体智能优化算法,它是通过模拟狼群的种群地位、跟踪猎物、包围猎物和攻击猎物而设计出来的.假设搜索空间是D维,那么第k个个体的位置可以表示为xk=(xk1,xk2,…,xkD),其中xky表示第k只个体在第y维上的位置.算法在初始化的过程中按照狼群地位等级从高到低的顺序将狼群个体划分4类,定义为地位第1的狼α、地位第2的狼β、地位第3的狼η和普通狼θ,分别代表最优解、优解、次解和其他解.假定α、β、η能够预知猎物的位置,则算法在迭代初期均需找出目前为止的最优个体位置,而后通过狼群捕猎的种群习性更新普通灰狼的位置,以此迭代结束,最终捕获猎物.灰狼优化算法的主要数学模型及其更新规则如下:
在这里插入图片描述
其中:t为当前迭代数;Dp(t)(p=α、β、η)为灰狼与猎物之间的距离;A和C为系数向量;Xp为当前猎物位置;Xl(l=1,2,3)为普通灰狼根据Xp更新的位置;a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值