⛄一、灰狼算法优化LSSVM简介
灰狼优化算法是一种新型的群体智能优化算法,它是通过模拟狼群的种群地位、跟踪猎物、包围猎物和攻击猎物而设计出来的.假设搜索空间是D维,那么第k个个体的位置可以表示为xk=(xk1,xk2,…,xkD),其中xky表示第k只个体在第y维上的位置.算法在初始化的过程中按照狼群地位等级从高到低的顺序将狼群个体划分4类,定义为地位第1的狼α、地位第2的狼β、地位第3的狼η和普通狼θ,分别代表最优解、优解、次解和其他解.假定α、β、η能够预知猎物的位置,则算法在迭代初期均需找出目前为止的最优个体位置,而后通过狼群捕猎的种群习性更新普通灰狼的位置,以此迭代结束,最终捕获猎物.灰狼优化算法的主要数学模型及其更新规则如下:
其中:t为当前迭代数;Dp(t)(p=α、β、η)为灰狼与猎物之间的距离;A和C为系数向量;Xp为当前猎物位置;Xl(l=1,2,3)为普通灰狼根据Xp更新的位置;a