【GRU回归预测】黏菌算法优化注意力机制卷积神经网络结合门控循环单元SMA-Attention-CNN-GRU数据预测(多输入单输出)【含Matlab源码 3906期】

在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、黏菌算法优化注意力机制卷积神经网络结合门控循环单元SMA-Attention-CNN-GRU数据预测

1 黏菌算法
SMA是根据黏菌个体的振荡捕食行为提出的一种智能优化算法,自然界中的黏菌可以根据空气中食物气味的浓度来接近食物,当黏菌静脉接触的食物浓度越高,生物振荡越强,黏菌静脉宽度增大,该区域聚集更多黏菌;当该区域食物浓度低时,黏菌转向探索其他区域。黏菌接近食物的数学模型描述如公式1所示:
在这里插入图片描述
式中,t为当前迭代次数,Xb(t)为当前最优个体位置,XA(t)和XB(t)为随机选择两个个体的位置,W为黏菌质量,代表适应度权重,vb和vc为控制参数,其中vb∈[-a,a],vc从1线性下降到0,r是[0,1]之间的随机数,控制变量p和参数a的数学模型描述如公式2和公式3所示:
在这里插入图片描述
式中,i∈1,2,3…,n,S(i)是当前个体适应度值,DF为当前最佳适应度值,tmax为最大迭代次数。权重参数W的数学模型描述如公式4所示:
在这里插入图片描述
式中,r表示取值[0,1]的随机数,bF表示当前迭代最佳适应度,S(i)表示当前个体适应度值,wf表示当前迭代最差适应度值,i=C表示种群中适应度排在前一半个体,i=O表示剩下的个体,SI(i)是适应度排序,表示气味指数。

即使黏菌找到了更好的食物来源,它们仍然会分离一些个体探索其他领域试图寻找更高质量的食物来源。因此,黏菌种群更新位置的数学模型描述如公式6所示:
在这里插入图片描述
式中,UB和LB分别表示搜索区域的上下界,rand表示取值[0,1]之间的随机数,z为自定义参数。

2 双向门控循环单元
在学术界已经提出了许多方法来解决这类问题。 其中最早的方法是”长短期记忆”(long-short-term memory,LSTM) (Hochreiter and Schmidhuber, 1997), 我们将在下一次讨论。 门控循环单元(gated recurrent unit,GRU) (Cho et al., 2014) 是一个稍微简化的变体,通常能够提供同等的效果, 并且计算 (Chung et al., 2014)的速度明显更快。 由于门控循环单元更简单,我们从它开始解读。

2.1 门控隐状态
门控循环单元与普通的循环神经网络之间的关键区别在于: 前者支持隐状态的门控。 这意味着模型有专门的机制来确定应该何时更新隐状态, 以及应该何时重置隐状态。 这些机制是可学习的,并且能够解决了上面列出的问题。 例如,如果第一个词元非常重要, 模型将学会在第一次观测之后不更新隐状态。 同样,模型也可以学会跳过不相关的临时观测。 最后,模型还将学会在需要的时候重置隐状态。 下面我们将详细讨论各类门控。

2.1.1重置门和更新门
我们首先介绍重置门(reset gate)和更新门(update gate)。 我们把它们设计成(0,1)区间中的向量, 这样我们就可以进行凸组合。 重置门允许我们控制“可能还想记住”的过去状态的数量; 更新门将允许我们控制新状态中有多少个是旧状态的副本。

我们从构造这些门控开始。 图描述了门控循环单元中的重置门和更新门的输入, 输入是由当前时间步的输入和前一时间步的隐状态给出。 两个门的输出是由使用sigmoid激活函数的两个全连接层给出。
在这里插入图片描述
2.1.2 候选隐状态
2.1.3 隐状态
这些设计可以帮助我们处理循环神经网络中的梯度消失问题, 并更好地捕获时间步距离很长的序列的依赖关系。 例如,如果整个子序列的所有时间步的更新门都接近于1, 则无论序列的长度如何,在序列起始时间步的旧隐状态都将很容易保留并传递到序列结束。
总之,门控循环单元具有以下两个显著特征:
重置门有助于捕获序列中的短期依赖关系;
更新门有助于捕获序列中的长期依赖关系。

3 黏菌算法优化注意力机制卷积神经网络结合门控循环单元SMA-Attention-CNN-GRU
黏菌算法优化注意力机制卷积神经网络结合门控循环单元(SMA-Attention-CNN-GRU)是一种用于图像处理和计算机视觉任务的深度学习模型。该模型结合了卷积神经网络(CNN)和门控循环单元(GRU),并使用黏菌算法来优化注意力机制。

首先,让我们了解一下卷积神经网络(CNN)。CNN是一种专门用于处理图像和视觉数据的深度学习模型。它通过使用卷积层、池化层和全连接层等组件来提取图像中的特征,并进行分类或回归等任务。

接下来,我们来介绍一下门控循环单元(GRU)。GRU是一种循环神经网络(RNN)的变体,它具有门控机制,可以更好地捕捉序列数据中的长期依赖关系。GRU通过更新门和重置门来控制信息的流动,从而有效地处理序列数据。

在SMA-Attention-CNN-GRU模型中,黏菌算法被用于优化注意力机制。注意力机制允许模型在处理图像时集中关注重要的区域或特征。黏菌算法是一种基于生物界黏菌的优化算法,它模拟了黏菌在环境中寻找最优路径的行为。通过应用黏菌算法,SMA-Attention-CNN-GRU模型可以自动学习到图像中最重要的区域,并将注意力集中在这些区域上。

总结一下,SMA-Attention-CNN-GRU模型是一种结合了卷积神经网络和门控循环单元的深度学习模型,通过黏菌算法优化注意力机制,可以在图像处理和计算机视觉任务中取得较好的效果。

⛄二、部分源代码

%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
tic
% restoredefaultpath

%% 导入数据
res = xlsread(‘data.xlsx’);

%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 2; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
res = res(randperm(num_samples), 😃; % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度

%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)‘;
T_train = res(1: num_train_s, f_ + 1: end)’;
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)‘;
T_test = res(num_train_s + 1: end, f_ + 1: end)’;
N = size(P_test, 2);

%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax(‘apply’, P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax(‘apply’, T_test, ps_output);

%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
p_train = double(reshape(p_train, f_, 1, 1, M));
p_test = double(reshape(p_test , f_, 1, 1, N));
t_train = double(t_train)‘;
t_test = double(t_test )’;

%% 数据格式转换
for i = 1 : M
Lp_train{i, 1} = p_train(:, :, 1, i);
end

for i = 1 : N
Lp_test{i, 1} = p_test( :, :, 1, i);
end

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]张立峰,刘 旭.基于 CNN-GRU 神经网络的短期负荷预测[J].电力科学与工 程. 2020年11月

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 22
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于Matlab的贝叶斯网络优化卷积神经网络结合门控循环单元CNN-GRU)用于预测的方法可以分为以下几个步骤: 1. 数据准备:收集和整理用于训练和测试的数据集。这个数据集应该包输入样本和相应的标签。 2. 数据预处理:对数据进行标准化和处理,以确保所有的输入样本在相同的范围内。可以使用Matlab中提供的函数进行数据预处理。 3. 构建CNN-GRU模型:使用Matlab中的深度学习工具箱搭建一个CNN-GRU模型。这个模型可以由卷积层、池化层、GRU层和全连接层组成。可以根据具体的预测任务来确定模型的结构和超参数。 4. 模型训练:将数据集划分为训练集和验证集,使用训练集来训练模型,并使用验证集来调整模型的参数和结构,以提高模型的性能。可以使用Matlab中提供的深度学习工具箱中的训练函数进行模型训练。 5. 模型评估:使用测试集对训练好的模型进行评估。可以计算模型在测试集上的准确率、精确率、召回率等指标来评估模型的性能。 6. 模型优化:如果模型的性能不满足要求,可以尝试调整模型的结构和参数,重新训练模型,直到取得满意的结果。 7. 预测:使用训练好的模型对新的输入样本进行预测。将输入样本输入CNN-GRU模型中,得到输出结果。 总之,基于Matlab的贝叶斯网络优化CNN-GRU模型能够结合卷积神经网络门控循环单元的优势,有效地进行预测任务。通过数据准备、数据预处理、模型构建、模型训练、模型评估、模型优化预测等步骤的组合,可以得到一个性能良好的预测模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值