【OFDM通信】比特加载技术OFDM系统自适应功率和比特资源分配【含Matlab源码 3988期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab领域博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;
🏫个人主页:Matlab领域
🏆代码获取方式:
CSDN Matlab领域—代码获取方式

🚅座右铭:路漫漫其修远兮,吾将上下而求索。
更多Matlab信号处理仿真内容点击👇
Matlab信号处理(高阶版)
付费专栏Matlab信号处理(进阶版)
付费专栏Matlab信号处理(初级版)

⛳️关注CSDN Matlab领域,更多资源等你来!!

⛄一、比特加载技术OFDM系统自适应功率和比特资源分配简介

1 OFDM
OFDM 技术的基本原理是将无线信道划分为若干互相正交的子信道,把高速串行数据流转化为低速并行子数据流,低速并行子数据流在子信道上独立传输。
OFDMA 是LTE的下行多址技术。OFDMA 就是用 OFDM 作为多址的方法。OFDM 当中的每一个频率叫做一个子载波。在 OFDM 当中,可以把一部分子载波分配给一个用户,把另一部分分配给另外的用户,从而作为多址的手段,称为 OFDMA。
因为 OFDMA 具有资源分配方式灵活、频谱利用率高、抗多径能力强等优点,受到了广泛的关注。然而水下信道的窄带宽、快时变的特点,仍然导致将 OFDMA 技术应用到水下环境中充满了挑战。

预备工作:
(1)水声 OFDM 多用户信道估计
OFDMA系统可以为用户分配一段连续的子载波,即子带式子载波来实现频谱资源共享;也可以利用等间隔的交织式子载波分配提高信道频率分集增益;还可以根据信道条件及用户需求灵活分配频谱资源,采用非等间隔的广义式子载波分配进一步提高系统性能。灵活的子载波分配方式也导致了用户导频在整个通信频段内无法均匀分布,给 OFDMA 上行通信中基于导频辅助的信道估计方法带来挑战。上行通信中,经历不同信道的多个用户同时接入,尤其对于频谱资源有限,多径扩展严重的水声信道,上行接收端如何利用各用户分配的少量、不均匀的导频,实现多用户信道估计称为 OFDMA 上行通信亟待解决的关键技术。

本文是基于最小均方误差估计(MMSE)。它是一种基于训练序列的信道估计方法。在发送信号中插入接收端已知的信息,接收端利用这些信息估计信道状态。最小均方误差估计算法的求解表达式为 argmin | Â - A0 |2 ,该方法的求解需要已知信道相关矩阵的先验信息,其估计性能好于最小二乘估计。

总结来讲,基于训练序列的信道估计算法的优点是信道估计性能好,收敛速度快,但是会占用传输带宽或时序,尤其是在信道存在严重时延扩展和多普勒扩展的情况下,若要保证信道估计仍有良好的性能,则需要响应大大增加训练序列的数量,这会严重降低信息传输的效率。因此,上述传统的基于训练序列的估计方法仅仅适用于时延扩展较小的慢变信道。

(2)OFDMA 资源分配
必要性:与有线信道的恒定不变不同,无线信道通常是随机变化的。如果采用固定的编码方式,系统就不能很好的使用信道的变化。于是就产生了自适应传输技术的概念。自适应传输技术,顾名思义,就是发射端通过获得信道状态信息合理地调整传输参数,尽可能与信道情况相匹配,从而充分利用各种资源并且有效提高系统性能。

自适应资源分配技术是在发射端获得一定的信道状态信息的前提下同调整发射功率、调制方式、符号率和编码方式等参数来使信息的发送与信道相匹配,从而提高系统的整体性能。

在 OFDM 系统中,各个子载波有着不同的衰落特性。如果采用平均功率分配,各子载波上的误比特率就不一样,信道条件不好的子载波误比特率会很大,这会严重影响整个系统的误比特率性能,因此优化各个子载波间的功率和加载比特就十分重要。单用户 OFDM系统的自适应资源分配算法根据优化目标的不同主要分为两类:传输速率受限情况下最小化系统的发射功率,和发射功率受限情况下最大化系统的传输速率。

多用户 OFDM 系统的自适应资源分配算法是根据信道状态信息载不同的用户间分配资源,实现子载波、比特和功率的联合资源分配。

对于非正交多址接入方式,目前 PD-NOMA 是很火的一个领域。

(3)NOMA资源分配
与正交多址接入相比,非正交多址接入的不同是基站对于不同用户在同时利用相同的频率资源向中继转发和用户终端发送信息。因此,在相同的带宽下,非正交多址系统能获得更高的系统容量,但代价是增加了接收端的信号检测复杂度。

NOMA 的基本信号波形是基于OFDMA,主要在功率域将多用户叠加,应用多路复用。在接收端采用串行干扰消除来保障非正交多址的可靠性。它能获得更高的系统增益,更高的频谱效率。

就拿两级叠加编码来讲,基站(源节点)可以同时同频发送两用户的叠加信号。信噪比弱的用户 1 在 用户 2 信号的干扰下解码自身数据;而信噪比强的 用户 2 首先解码 用户 1 的数据,然后将该数据从接收的信号中消除,最后解码自身数据。
  
2 原理
OFDM(正交频分复用)是一种常用的调制技术,它将高速数据流分成多个低速子载波进行传输,具有抗多径衰落和频谱利用率高的优点。在OFDM系统中,自适应功率和比特资源分配是为了优化系统性能而进行的动态调整。

自适应功率分配是指根据信道条件和用户需求,动态地分配每个子载波的功率。一般来说,信道质量好的子载波可以分配更多的功率,而质量较差的子载波则分配较少的功率。这样可以提高整体系统的传输效率和可靠性。

比特资源分配是指根据用户需求和信道条件,动态地分配每个子载波的比特数。一般来说,信道质量好的子载波可以分配更多的比特数,而质量较差的子载波则分配较少的比特数。这样可以提高整体系统的传输速率和可靠性。

自适应功率和比特资源分配原理主要包括以下几个步骤:
(1)信道估计:通过接收端对接收到的信号进行信道估计,得到各个子载波的信道质量信息。
(2)信道质量反馈:将信道质量信息反馈给发送端,告知发送端各个子载波的信道质量情况。
(3)功率和比特资源分配算法:根据信道质量信息和用户需求,使用一定的算法来决定每个子载波的功率和比特分配。
(4)功率和比特分配更新:根据实时的信道质量和用户需求变化,动态地更新功率和比特分配策略。
通过自适应功率和比特资源分配,OFDM系统可以根据实际情况灵活地调整每个子载波的功率和比特分配,从而提高系统的传输效率、可靠性和适应性。

⛄二、部分源代码

%Hughes-Hartogs Algorithm Demo比特加载技术
%--------------------------------

%-------------------------
N_subc=64;
P_av=1;
Pt=P_avN_subc;
SNR_av=0;
Noise=P_av./10.^(SNR_av./10);
B=1e6;
N_psd=Noise./(B/N_subc);
BER=1e-4;
M=8;
Rb=128;
H=random(‘rayleigh’,1,1,N_subc);
%--------------------------------------
[bit_alloc, power_alloc]=Hughes_Hartogs(N_subc,Rb,M,BER,N_psd,H);
bit_alloc
power_alloc=Pt.
(power_alloc./sum(power_alloc))
%--------------------------------------
clf;
figure(1);
subplot(2,1,1);
stem(bit_alloc,‘fill’,‘MarkerSize’,3);
hold on;
plot(H,‘-r’);
ylabel(‘比特分配’);
xlabel(‘子载波’);
subplot(2,1,2);
stem(power_alloc,‘fill’,‘MarkerSize’,3);
hold on;
plot(H,‘-r’);
ylabel(‘资源分配’);
xlabel(‘子载波’);
%--------------------------------
figure(2);
subplot(3,1,1);
plot(H,‘-r’);
subplot(3,1,2);
stem(bit_alloc,‘fill’,‘MarkerSize’,3);
subplot(3,1,3);
stem(power_alloc,‘fill’,‘MarkerSize’,3);
ylabel(‘资源分配’);
xlabel(‘子载波’);
grid on;

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 沈再阳.精通MATLAB信号处理[M].清华大学出版社,2015.
[2]高宝建,彭进业,王琳,潘建寿.信号与系统——使用MATLAB分析与实现[M].清华大学出版社,2020.
[3]王文光,魏少明,任欣.信号处理与系统分析的MATLAB实现[M].电子工业出版社,2018.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值