✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)
⛄一、最小二乘法LS+最小均方误差MMSE+线性最小均方误差法LMMSE OFDM信道估计
1 最小二乘法LS
最小二乘法(Least Squares, LS)是一种常用的参数估计方法,用于拟合数据点与理论模型之间的差异。最小二乘法的基本思想是通过最小化误差平方和来确定模型参数的最佳估计。具体而言,对于给定的一组数据点,我们假设它们之间存在某种线性或非线性关系。然后,通过调整模型参数,使得模型预测值与实际观测值之间的误差平方和最小化。
在最小二乘法中,我们通常使用线性回归模型来拟合数据。对于线性回归,我们假设数据点之间存在一个线性关系,即 y = mx + b,其中 y 是因变量,x 是自变量,m 和 b 是待估计的参数。通过最小二乘法,我们可以找到最佳的 m 和 b 值,使得拟合直线与数据点之间的误差平方和最小。
除了线性回归,最小二乘法还可以用于拟合其他类型的函数模型,如多项式回归、指数函数拟合等。无论是线性还是非线性模型,最小二乘法都可以提供一个可靠的参数估计方法。
在信道估计中,LS方法可以用于估计信道的参数,如信道增益和相位。
2 最小均方误差MMSE
最小均方误差(Minimum Mean Square Error, MMSE)是一种优化准则,用于在已知观测数据和信道模型的情况下,估计信号的最优解。在信道估计中,MMSE方法可以通过最小化估计误差的均方误差来获得更准确的信道估计结果。
最小均方误差法(Least Mean Square, LMS)是一种常用的自适应滤波算法,用于估计未知系统的参数或者进行信号处理。它的目标是通过最小化均方误差来调整滤波器的权值,使得输出信号与期望信号之间的误差最小化。
LMS算法的基本原理是通过不断调整滤波器的权值,使得滤波器的输出与期望信号之间的均方误差最小。具体来说,LMS算法根据当前输入信号和期望输出信号的差异来更新滤波器的权值,使得误差逐渐减小。这个过程是一个迭代的过程,通过不断迭代更新权值,最终达到最小化均方误差的目标。
LMS算法的更新规则如下:
w(n+1) = w(n) + μ * e(n) * x(n)
其中,w(n)表示第n次迭代时滤波器的权值,μ是步长参数,e(n)表示当前时刻的误差,x(n)表示当前时刻的输入信号。
LMS算法具有简单、易于实现的特点,广泛应用于自适应滤波、信号处理、系统辨识等领域。
3 线性最小均方误差法LMMSE
线性最小均方误差法(Linear Minimum Mean Square Error, LMMSE)是一种基于线性滤波器的信道估计方法。它通过将接收到的信号与滤波器系数进行线性组合,以最小化估计误差的均方误差。LMMSE方法在OFDM(正交频分复用)系统中广泛应用于信道估计,用于提高信号的可靠性和性能。
在OFDM信道估计中,LS、MMSE和LMMSE方法都可以用于估计信道的参数,以便在接收端对接收到的信号进行解调和恢复原始数据。OFDM信道估计原理是通过发送已知的训练序列,在接收端接收到经过信道传输后的序列,并利用最小二乘法、最小均方误差法或线性最小均方误差法等方法,对信道的频率响应进行估计。这样可以得到一个近似的信道模型,从而在接收端进行信号解调和恢复时,对信道引起的失真进行补偿,提高系统的性能和可靠性。
⛄二、部分源代码
%測量不作估計時和采用LS估计算法時的誤碼性能
clear all;
close all;
%定義
pilot_inter=5; %导頻間隔
pilot_symbol_bit=[0 0 0 1]; %导頻符號
carrier_count=128; %子載波數
bits_per_symbol_16QAM=4; %采用該調制时一符號占位數
cp_length=16; %cp長度
SNR_dB=[0 2 4 6 8 10 12 14 16]; %不同的SNR
ls_err_ber=zeros(1,length(SNR_dB));
no_est_error_ber=zeros(1,length(SNR_dB));
for i=1:length(SNR_dB) %每个SNR点上仿真若干次
ls_error_bit=0;
no_est_error_bit=0;
total_bit_num=0;
symbols_per_carrier=50; %%%%%%%%%%%%每个timeslot中每个子载波的ofdm符号数
baseband_out_num=carrier_count*(symbols_per_carrier+pilot_inter)bits_per_symbol_16QAM;
baseband_out=round(rand(1, baseband_out_num));
%二进制数据映射为16进制数
convert_matrix=reshape(baseband_out, bits_per_symbol_16QAMcarrier_count,…
length(baseband_out)/ (bits_per_symbol_16QAMcarrier_count));
%其中length(baseband_out)/(bits_per_symbol_16QAMcarrier_count)就是(symbols_per_carrier+pilot_inter)
total_bit_num=baseband_out_num;
%影射
map_out=map_16_QAM(convert_matrix);
%插入导頻
[insert_pilot_out,pilot_num,pilot_code]=insert_pilot(pilot_inter,pilot_symbol_bit,map_out);
%FFT變換
ofdm_mode_out=ifft(insert_pilot_out,128);
%插入循环前缀
ofdm_cp_out=insert_cp(ofdm_mode_out,cp_length);
[ofdm_cp_out_m,ofdm_cp_out_n]=size(ofdm_cp_out);
%送出
ofdm_modulation=reshape(ofdm_cp_out,1,ofdm_cp_out_mofdm_cp_out_n);
Tx_data=ofdm_modulation;
%静态信道(多径)
multipath_signal=multi_chan(Tx_data,ofdm_cp_out_m,ofdm_cp_out_n);
passchan_ofdm_symbol=reshape(multipath_signal,ofdm_cp_out_m,ofdm_cp_out_n);
%加噪聲
snr=10^(SNR_dB(i)/10);
[nnl1,mml1]=size(passchan_ofdm_symbol);
spow=0;
for k=1:nnl1
for b=1:mml1
spow=spow+real(passchan_ofdm_symbol(k,b))2+imag(passchan_ofdm_symbol(k,b))2;
end
end
spow1=spow/(nnl1mml1);
sgma=sqrt(spow1/(2*snr));%sgma计算方式,与当前SNR和信号平均能量有关系
receive_ofdm_symbol=add_noise(sgma,passchan_ofdm_symbol);
%加入随机高斯白噪声,receive_ofdm_symbol为最终接收机收到的ofdm符号块
%去循環前綴
cut_cp_symbol=del_cp(receive_ofdm_symbol,cp_length);
%FFT
ofdm_demodulation_out=fft(cut_cp_symbol,128);%作128点FFT运算,完成ofdm解调
%估計
ls_zf_detect_sig=ls_estimation(ofdm_demodulation_out,pilot_inter,pilot_code,pilot_num);%采用LS估计算法测得到的接收信号
no_detect_sig=de_p(ofdm_demodulation_out,pilot_inter,pilot_code,pilot_num);%不作估計時测得到的接收信号,直接把导頻删去
%解映射
ls_receive_bit_sig=de_map(ls_zf_detect_sig);%16QAM解映射
no_est_receive_bit_sig=de_map(no_detect_sig);%16QAM解映射
%以下过程统计各种估计算法得到的接收信号中的错误比特数
ls_err_num=error_count(convert_matrix,ls_receive_bit_sig);
no_est_err_num=error_count(convert_matrix,no_est_receive_bit_sig);
ls_error_bit=ls_error_bit+ls_err_num;
no_est_error_bit=no_est_error_bit+no_est_err_num;
%计算各种估计算法的误比特率
ls_err_ber(i)=ls_error_bit/total_bit_num;
no_est_error_ber(i)=no_est_error_bit/total_bit_num;
end
plot(SNR_dB,no_est_error_ber,'b-',SNR_dB,ls_err_ber,‘r-o’)
title(‘多径情况下插入导频,训练符号及不作估计方式比较’)
xlabel(‘SNR’)
ylabel(‘BER’)
grid on
hold on
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Ofdm系統仿真程序 訓練序列 有估計 16qam 有多徑
%定義
%pilot_inter=5;
%pilot_symbol_bit=[0 0 0 1];
carrier_count=128;
bits_per_symbol_16QAM=4;
cp_length=16;
SNR_dB=[0 2 4 6 8 10 12 14 16];
training_err_ber=zeros(1,length(SNR_dB));
for i=1:length(SNR_dB) %每个SNR点上仿真若干次
training_err_bit=0;
total_bit_num=0;
symbols_per_carrier=50;
baseband_out_num=carrier_count(symbols_per_carrier)bits_per_symbol_16QAM;
baseband_out=round(rand(1, baseband_out_num));
%二进制数据映射为16进制数
convert_matrix=reshape(baseband_out, bits_per_symbol_16QAMcarrier_count,length(baseband_out)/ (bits_per_symbol_16QAMcarrier_count));
total_bit_num=baseband_out_num;
%影射
map_out=map_16_QAM(convert_matrix);
%不插入导頻
%[insert_pilot_out,pilot_num,pilot_code]=insert_pilot(pilot_inter,pilot_symbol_bit,map_out);
%插入訓練序列
training_symbols=[1+j;1-j;-1+j;-1-j;3+j;1+3j;3-j;1-3j;-1+3j;-3+j;-3-j;-1-3j;3+3j;-3+3j;-3-3j;3-3j];
training_symbols=[training_symbols;training_symbols];
training_symbols=[training_symbols;training_symbols];
training_symbols=[training_symbols;training_symbols];
training_symbols=[training_symbols,training_symbols];
training_symbols=[training_symbols,training_symbols]; %造出一個1284的訓練符號矩陣
insert_training_out=[training_symbols,map_out]; %合井到要傳的數据上
train_length=size(training_symbols,2);
total_length=size(insert_training_out,2);
%FFT變換
ofdm_mode_out=ifft(insert_training_out,128);
%插入循环前缀
ofdm_cp_out=insert_cp(ofdm_mode_out,cp_length);
[ofdm_cp_out_m,ofdm_cp_out_n]=size(ofdm_cp_out);
%送出
ofdm_modulation=reshape(ofdm_cp_out,1,ofdm_cp_out_mofdm_cp_out_n);
Tx_data=ofdm_modulation;
%静态信道(多径)
multipath_signal=multi_chan(Tx_data,ofdm_cp_out_m,ofdm_cp_out_n);
passchan_ofdm_symbol=reshape(multipath_signal,ofdm_cp_out_m,ofdm_cp_out_n);
%加噪聲
snr=10^(SNR_dB(i)/10);
[nnl1,mml1]=size(passchan_ofdm_symbol);
spow=0;
for k=1:nnl1
for b=1:mml1
spow=spow+real(passchan_ofdm_symbol(k,b))2+imag(passchan_ofdm_symbol(k,b))2;
end
end
spow1=spow/(nnl1mml1);
sgma=sqrt(spow1/(2*snr));%sgma计算方式,与当前SNR和信号平均能量有关系
receive_ofdm_symbol=add_noise(sgma,passchan_ofdm_symbol);%加入随机高斯白噪声,receive_ofdm_symbol为最终接收机收到的ofdm符号块
%去循環前綴
cut_cp_symbol=del_cp(receive_ofdm_symbol,cp_length);
%FFT
ofdm_demodulation_out=fft(cut_cp_symbol,128);%作128点FFT运算,完成ofdm解调
Rx_carriers = ofdm_demodulation_out(:,(train_length+1):total_length );
Rx_training_symbols = ofdm_demodulation_out(:,(1: train_length) );
Rx_training_symbols1=Rx_training_symbols;
%信道估计
Rx_training_symbols = Rx_training_symbols./ training_symbols;
Rx_training_symbols_deno = Rx_training_symbols.^2;
Rx_training_symbols_deno = Rx_training_symbols_deno(:,1)+Rx_training_symbols_deno(:,2)+Rx_training_symbols_deno(:,3)+Rx_training_symbols_deno(:,4) ;
Rx_training_symbols_nume = Rx_training_symbols(:,1) +Rx_training_symbols(:,2) + Rx_training_symbols(:,3) +Rx_training_symbols(:,4) ;
Rx_training_symbols_nume = conj(Rx_training_symbols_nume) ;
% 取4个向量的导频符号是为了进行平均优化
% 都是针对 “行向量”即单个的OFDM符号 进行操作
% 原理:寻求1/H,对FFT之后的数据进行频域补偿
% 1/H = conj(H)/H^2 because H^2 = H * conj(H)
Rx_training_symbols = Rx_training_symbols_nume./Rx_training_symbols_deno;
Rx_training_symbols_2 =[Rx_training_symbols,Rx_training_symbols];
Rx_training_symbols_4 =[Rx_training_symbols_2,Rx_training_symbols_2];
Rx_training_symbols_8 =[Rx_training_symbols_4,Rx_training_symbols_4];
Rx_training_symbols_16 =[Rx_training_symbols_8,Rx_training_symbols_8];
Rx_training_symbols_32 =[Rx_training_symbols_16,Rx_training_symbols_16];
Rx_training_symbols_48 =[Rx_training_symbols_32,Rx_training_symbols_16];
Rx_training_symbols_50 =[Rx_training_symbols_48,Rx_training_symbols_2];
Rx_carriers = Rx_training_symbols_50.*Rx_carriers;
%解映射
receive_bit_sig=de_map(Rx_carriers);
%以下过程统计各种估计算法得到的接收信号中的错误比特数
err_num=error_count(convert_matrix,receive_bit_sig);
trainning_error_bit=training_err_bit+err_num;
%计算各种估计算法的误比特率
trainning_err_ber(i)=trainning_error_bit/total_bit_num;
end
plot(SNR_dB,trainning_err_ber,‘g-+’)
legend(‘不作估计’,‘插入导频(ls准测)估计’,‘利用训练符号的估计’)
grid on
hold on
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]王跃.OFDM系统信道估计算法研究[J].中国科技论文在线). 2017,33(16)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置