【优化设计】遗传算法和直接搜索工具箱求解双叉骨悬架系统设计优化问题【含Matlab源码 7451期】

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab领域博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;
🏫个人主页:Matlab领域
🏆代码获取方式:
CSDN Matlab领域—代码获取方式

🚅座右铭:路漫漫其修远兮,吾将上下而求索。
更多Matlab优化求解仿真内容点击👇
Matlab优化求解(高阶版)
付费专栏Matlab优化求解(进阶版)
付费专栏Matlab优化求解(初级版)

⛳️关注CSDN Matlab领域,更多资源等你来!!

⛄一、遗传算法和直接搜索工具箱求解双叉骨悬架系统设计优化问题

遗传算法是一种基于自然选择和遗传学原理的优化搜索技术,主要用于解决复杂的全局优化问题,例如在双叉骨悬架系统的工程设计中寻找最佳解决方案。以下是遗传算法应用于此类问题的一般步骤:

1 初始化种群:首先创建一个包含随机解(即悬架系统的设计参数组合)的初始种群。这个种群通常由一系列个体组成,每个个体代表一个可能的解决方案。

2 适应度评估:计算每个个体的适应度函数值,这通常是通过模拟实际系统性能(如减震效果、结构强度等)来衡量的。适应度越高,表示该设计越好。

3 选择:根据每个个体的适应度进行选择,概率较高的个体更有可能被选中用于繁殖下一代。常用的策略有轮盘赌选择法或锦标赛选择法。

4 交叉(重组):选出的父母个体进行基因重组操作,生成新的可能解,这种方法有助于探索多种可能性。

5 变异:对新生成的个体施加变异,引入一定程度的随机性,增加种群多样性,避免陷入局部最优。

6 迭代过程:重复上述步骤直到达到预设的停止条件,如达到一定的代数限制或适应度值不再显著提高。

7 结果分析:从最终种群中选取适应度最高的个体作为优化后的双叉骨悬架系统设计方案。

直接搜索工具箱(如梯度下降、粒子群优化等)则更侧重于连续空间的局部优化。它们通常依赖于目标函数的导数信息,逐步沿着最陡升的方向调整参数。这类方法适用于较光滑的优化问题,但对于复杂非线性问题,遗传算法往往表现更好。

⛄二、部分源代码和运行步骤

1 部分代码
%% Optimization of a Double Wishbone Suspension System
% This demo shows how to use MATLAB, Optimization Toolbox, and Genetic
% Algorithm and Direct Search Toolbox to optimize the design of a double
% wishbone suspension system.
%
% Note: You will need to have the following products installed in order to
% run this demo: MATLAB, Simulink, Optimization Toolbox, Genetic Algorithm
% and Direct Search Toolbox, and SimMechanics. Optional: Virtual Reality
% Toolbox.

%
%% Introduction to the Problem
% We wish to optimize the response of a double wishbone suspension system.
% The response we are evaluating is the camber angle vs. travel distance as
% shown in the figure below. Our current design is shown in green. We
% want to achieve the profile shown in blue.
%
% Camber angle is the angle of the tire relative to the perpendicular axis
% to the road. A negative camber angle is beneficial to handling.
%
% Travel distance is the amount of verticle motion of the car as a result
% of traveling over a bump or pothole in the road.
%
verifyInstalled % verify products installed
wbOptimSetUp % Load in geometry
wbPlotFun(idealProfile) % Plot ideal profile
wbPlotFun(x,time,‘initial’) % Simulate and Plot current profile

%% Double Wishbone Model
% A model of the double wishbone suspension system was created using
% Simulink with SimMechanics. We will use this model to simulate
% the performance of our suspension system.
if license(‘test’,‘virtual_reality_toolbox’)
simName = ‘DoubleWishboneVR.mdl’;
else
simName = ‘DoubleWishbone.mdl’;
end
open(simName)
sim(simName)
%% Input Geometry Definition
% The wishbone geometry is defined according to diagram below. We have 15
% inputs that we specify, denoted as X1 - X15, that determine the double
% wishbone connection points and rod lengths. These are defined as:
%
% Upper Arm Length X1 = AG
% Upper Arm Connection Point B (X2, X3, X4) = (xB, yB, zB)
% Upper Arm Connection Point C (X5, X6, X7) = (xC, yC, zC)
% Lower Arm Length X8 = DG
% Upper Arm Connection Point E (X9, X10, X11) = (xE, yE, zE)
% Upper Arm Connection Point F (X12, X13, X14) = (xF, yF, zF)
% Connecting Ling Length X15 = AD
%
% All dimensions are input to the model in inches.

x %Current geometric definition
figure(‘Position’,[1 700 700*317/545 700])
image(imread(‘schematic.png’,‘BackgroundColor’,[1 1 1]))
axis equal, axis tight, axis off

%% Problem Formulation
% Our objective is to minimize the difference between the ‘Actual’ profile
% and the ‘Ideal’ profile by changing the geometry parameters X1 - X15.
% Our problem is formulated as a constrained minimization problem:
%
% Objective function:
%
% m i n f ( x ) min f(x) minf(x)
%
% where
%
% f ( x ) = n o r m [ ( C a m b e r A n g l e a c t u a l − C a m b e r A n g l e i d e a l ) + f(x)= norm[(CamberAngle_{actual} - CamberAngle_{ideal}) + f(x)=norm[(CamberAngleactualCamberAngleideal)+
% ( T r a v e l D i s t a n c e a c t u a l − T r a v e l D i s t a n c e i d e a l ) ] (TravelDistance_{actual}-TravelDistance_{ideal})] (TravelDistanceactualTravelDistanceideal)]
%
% Subject to (constraints):
%
% A ⋅ x < = 0 A \cdot x <= 0 Ax<=0
%
% l b < = x < = u b lb <= x <= ub lb<=x<=ub

%% Objective Function
% Our objective function is defined to return a single value, which is a
% measure of how close the ‘Actual’ profile is to the ‘Ideal’ profile. Our
% objective function is defined in the function |wbObjFun|.
type wbObjFun

%% Constraint Definition
% The constraint specified for the model are (refer to previous figure):
%
% BAC Angle (degrees) 25 <= BAC <= 35 -|
% EDF Angle (degrees) 15 <= EDF <= 30 |- A
% Point B/C rotation (degrees) BC <= 10 |
% Point E/F rotation (degrees) EF <= 5 -|
% Upper Arm Length Limits 6 <= X1 <= 16
% Point B X-Axis Limits 10 <= X2 <= 16
% Point C X-Axis Limits 10 <= X5 <= 16
% Lower Arm Length Limits 8 <= X8 <= 18
% Point E X-Axis Limits 6 <= X9 <= 14
% Point F X-Axis Limits 12 <= X12 <= 20
% Ling Length X15 <= 18
% |||
% | |
% lb ub
%
% Coefficient matrix A and upper and lower bounds are defined in
% |wbOptimSetup|.

%% Solve the Problem Using Optimization Toolbox
% The problem can be solved using the |fmincon| solver in Optimization
% Toolbox. To use the |optimtool| GUI to set up an run the problem, load
% the optimization problem definition in |optimtoolProblem.mat|, then type
% |optimtool| at the command line and once the GUI is open, select File
% --> Import Problem --> optimtoolProblem.
The problem is now defined in
% the GUI, select Start.

load optimtoolProblem
% optimtool % uncomment this line to run interactively in the GUI
%
% Command line equivalent
% -----------------------
% Start with the default options (may want to comment out this section if
% running interactively.
options = optimset;
% Modify options setting
% Note: You can use the defaults as well, this will speed up the solution
options = optimset(options,‘Display’ ,‘iter’);
options = optimset(options,‘TolFun’ ,0.1);
options = optimset(options,‘LargeScale’ ,‘off’);
% Request plots, add my custom plot to the mix
options = optimset(options,‘OutputFcn’ ,{ @updatePlot });
options = optimset(options,‘PlotFcns’ ,{ @optimplotx @optimplotfval });
tic
[x_x0] = fmincon(@(x) wbObjFun(x,time,idealProfile),x0,Aineq,bineq,…
[],[],lb,ub,[],options);
toc
x_x0

%% Solve the Problem Using a Different Start Point
% At this point, I d like take a look at our problem from a different
% angle. As you may know, gradient based solvers, such as the one
% we used here, tend to fail if the objective function does not have smooth
% derivatives or the problem is ill-defined. Let’s change the start point
% of this problem, and see if |fmincon| can find a solution.
load wbPSOpt
tic
try
[x_x0c] = fmincon(@(x) wbObjFun(x,time,idealProfile),x0c,Aineq,bineq,…
[],[],lb,ub,[],options);
catch
disp(‘We caught the following error’)
nowork = lasterror;
nowork.message
end

2 通用运行步骤
(1)直接运行main.m即可一键出图

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2019b

2 参考文献
[1] 杜海霞.锥齿轮减速器的遗传算法优化设计[J].现代制造技术与装备,2010.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

matlab 语音除噪 音信号处理是语音学与数字信号处理技术相结合的交叉学科,课题在这里不讨论语音学,而是将语音当做一种特殊的信号,即一种“复杂向量”来看待。也就是说,课题更多的还是体现了数字信号处理技术[1]。数字信号处理技术主要研究离散线性时不变系统,数字滤波和频谱分析是它的的两个主要分支。数字滤波(Digital filter),即在形形色色的信号中提取所需信号,抑制不必要的干扰。数字滤波器可以在时域实现也可以在频域实现,主要有两种类型;无限长冲击数字滤波器(IIR)和有限长冲击数字滤波器(FIR)。频谱分析(SA,Spectrum Analysis),对各种信号进行频域上的加工处理,其核心内容是快速傅里叶变换(FFT),分析的结果是一频率为坐标的各种物理量的谱线和曲线[2]。从课题的中心来看,课题“基于MATLAB的有噪声语音信号处理”是希望将数字信号处理技术应用于某一实际领域,这里就是指对语音及加噪处理。作为存储于计算机中的语音信号,其本身就是离散化了的向量,我们只需将这些离散的量提取出来,就可以对其进行处理了。这一过程的实现,用到了处理数字信号的强有力工具MATLAB[3]。MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。它提供了功能齐全的滤波器设计,与信号处理交互式图形用户界面(Interactive graphical user interface),主要包括FDATool和SPATool两种交互式工具,其中FDATool主要用于数字滤波器设计与分析,而SPATool不仅可以设计分析滤波器,而且可以对信号进行时域与频域的分析[4]。通过MATLAB里几个命令函数的调用,很轻易的在实际语音与数字信号的理论之间搭了一座桥。课题的特色在于它将语音信号看作一个向量,于是就把语音数字化了。那么,就可以完全利用数字信号处理的知识来解决语音及加噪处理问题。我们可以像给一般信号做频谱分析一样,来对语音信号做频谱分析,也可以较容易的用数字滤波器来对语音进行滤波处理。[5]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab领域

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值