0 FLOW:模块化智能体工作流自动化
摘要
大型语言模型(LLM)驱动的多智能体框架在自动规划与任务执行方面已取得显著成功。然而,如何在执行过程中有效调整智能体工作流仍缺乏深入研究。在现实场景中,初始计划必须实时应对不可预见的挑战和变化条件,才能确保复杂任务的高效完成,因此工作流的动态调整至关重要。本文将工作流定义为“顶点活动图”(AOV),允许 LLM 智能体基于历史性能与先前 AOV 持续优化子任务分配,从而实现工作流的不断精炼。为进一步提升框架性能,我们从并行度和依赖复杂度两个维度强调工作流设计的模块化。凭借该设计,所提出的多智能体框架能够高效并发执行子任务、有效达成目标,并增强容错能力。在多种实际任务上的实验结果表明,通过动态工作流精炼与模块化,多智能体框架的效率获得了显著提升。代码已开源:https://github.com/tmllab/2025_ICLR_FLOW。
作者团队
Boye Niu¹, Yiliao Song², Kai Lian¹, Yifan Shen⁴, Yu Yao¹, Kun Zhang³,⁴, Tongliang Liu¹,⁴†
¹悉尼大学悉尼人工智能中心
²阿德莱德大学
³卡内基梅隆大学
⁴穆罕默德·本·扎耶德人工智能大学
†通讯作者:Tongliang Liu (tongliang.liu@sydney.edu.au)
会议/期刊
ICLR 2025(International Conference on Learning Representations,2025 年第十三届国际学习表征会议)
发表日期
会议正式出版年份为 2025 年(ICLR 2025 将于 2025 年 4-5 月召开)。
1 引言
大型语言模型(LLMs)(Significant Gravitas;Zhou 等,2023)在理解和生成类人文本方面表现出卓越能力。最新进展进一步显著提升了其模拟人类推理的潜力(Sun 等,2024),为基于 LLM 的推理开辟了光明前景。凭借处理各种自然语言处理任务的强大能力,这些模型支撑着从对话智能体(Ye 等,2024)、内容创作工具(Yao 等,2023)到高级分析与决策系统(Ramesh 等,2021;Wang 等,2023)等广泛应用。在这一基础上,一个关键进展是 LLM 赋能的多智能体框架的兴起(Liu 等,2023;Li 等,2023;Hong 等,2024b;Wu 等,2024;Wang 等,2024;Chen 等,2024;Liu 等,2024),其中多个基于 LLM 的智能体协同合作,利用其集体推理与规划能力,自动化并优化任务执行过程。
现有的基于 LLM 的多智能体框架通常将语言模型本身定义为智能体,这些智能体通过人工设计或由 LLM 生成的提示相互协作。具体而言:
-
MetaGPT 专注于编程任务,借鉴标准化操作流程(SOPs)(Wooldridge & Jennings, 1998;DeMarco & Lister, 2013;Belbin, 2010)。它预先定义了明确的角色,如产品经理、项目经理和工程师。每个角色对应初始化一个 LLM 智能体,这些智能体在一个严格且顺序化的工作流中协同执行子任务。
-
CAMEL 能够完成多种类型的任务,要求用户预先定义两个智能体。这两个智能体以顺序方式交互并执行任务,各自承担特定的职责。
-
AutoGen 同样旨在完成多样化任务。与 CAMEL 不同的是,AutoGen 会根据子任务需求自动生成具有不同角色的智能体列表,这些智能体按照列表顺序依次执行子任务。
在继承现有多智能体框架优势的基础上,我们的研究致力于进一步提升通用多智能体框架的能力:一方面在任务执行过程中实现工作流的动态更新,另一方面在工作流规划阶段强化其模块化设计。
具体来说,动态更新工作流允许智能体根据实时的绩效反馈和不断变化的条件,实时调整子任务的分配和智能体的角色。这一能力确保系统在面对意外障碍时仍能保持响应性和高效性。例如,如果某个智能体在数据预处理过程中遇到障碍,系统可以将该子任务重新分配给另一个智能体,或引入一个新的子任务来解决问题。这种适应性对于维持系统的稳健性、确保复杂任务的无缝执行至关重要。
系统设计中的模块化是指将系统划分为独立运行的模块,每个模块负责特定的功能(Baldwin & Clark, 1999)。在我们的语境中,模块化指的是将一个复杂任务分解为更小、可互换的子任务模块。高度模块化的工作流使子任务能够并发执行,不会因工作流程其他部分而造成瓶颈,从而直接提升多智能体框架的运行效率。此外,模块化还增强了动态更新的便利性。当工作流高度模块化时,子任务之间的依赖复杂度较低,因此更新某个子任务不会影响其他子任务,从而实现对工作流的小幅调整。例如,如果负责数据预处理的智能体遇到意外障碍,一个高度模块化的系统可以通过仅引入一个子任务来进行适应,对其余工作流的影响微乎其微。
本文通过实现模块化并支持动态工作流更新,对现有多智能体框架进行了增强。我们的框架允许智能体并行执行其子任务,同时支持高效的工作流更新。实现方式是将整个工作流建模为一个“顶点活动(Activity-on-Vertex, AOV)图”,即有向无环图(DAG),其中每个子任务表示为一个节点,附带其状态与生成日志,有向边则表示子任务之间的依赖关系。为了从一开始就鼓励模块化设计,我们为任务生成多个候选 AOV 图,并依据其并行度与依赖复杂度进行评估。最终选择并行度最高且依赖复杂度最低的 AOV 图作为执行方案。
在任务执行过程中,框架会持续检查并优化工作流,一旦某个子任务失败便立即触发更新(见图 2:Check & Refine)。系统依据实时性能数据与当前工作流状态,动态调整子任务分配与智能体角色。由于基于 AOV 的工作流天然具备高模块化特性,更新单一模块通常不会波及其他模块,因此只需进行局部调整即可完成工作流更新(见图 2:Update)。与初始工作流生成阶段类似,动态更新时同样会生成多个候选 AOV 图,并再次选择并行度最高、依赖复杂度最低的那一张。通过这种迭代式的工作流精炼,框架能够在整个任务执行过程中不断适应新挑战与演化目标,实现动态更新而整体性能不受影响。
贡献如下:
- 我们首次在多智能体工作流中系统性地引入并倡导模块化理念,强调设计高并行、低依赖的拓扑结构。该模块化方案通过让子任务并发执行、削弱复杂耦合带来的瓶颈,全面提升效率、鲁棒性与可扩展性。
- 提出一套可在运行时高度灵活更新的实用多智能体框架。该方法基于全局信息对整体工作流实施“局部更新”,使智能体在遭遇突发挑战时能快速自适应,同时保持系统的一致性与连贯性。
- 通过大量实验验证,与现有方案相比,我们的框架在适应性与执行效率两方面均取得显著提升。
2 RELATED WORK
基于LLM的任务决策制定。 最近基于大语言模型(LLM)的任务决策制定研究集中在提升智能体的推理与规划能力(Yao 等,2023;Song 等,2023;Zhou 等,2024;Prasad 等,2023;Shinn

最低0.47元/天 解锁文章
4123

被折叠的 条评论
为什么被折叠?



