求解空间中点到直线的距离(附Matlab实现函数)

本文介绍了如何使用向量叉乘计算已知空间中直线上一点P1和方向向量的点P3到直线的距离。通过向量的几何意义和Matlab代码示例,展示了如何求解平行四边形面积并计算距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

结论

        我们先说公式:已知空间中直线上一点P1和直线的方向向量\overrightarrow{U},求点P3到直线的距离:

\frac{|\overrightarrow{P1P3} \times \overrightarrow{U}|}{| \overrightarrow{U}|}

向量的叉乘

要解决这个问题,首先要了解向量叉乘的意义。

向量点乘与叉乘的概念及几何意义

        可以参考下上面这篇文章,可以知道,向量的叉乘得到的是一个垂直于两叉乘向量,同时得到的向量的模长等于两向量所围成平行四边形的面积

求解距离

        

        当我们已知平行四边形的面积时,求解H就可以由方程:

S = |\overrightarrow{U}|H = |\overrightarrow{P1P3} \times \overrightarrow{U}|

        由此可得:

                                                        H = \frac{|\overrightarrow{P1P3} \times \overrightarrow{U}|}{| \overrightarrow{U}|}

Matlab代码实现

function dis = getPoints2lineDis(point1_on_line, point2_on_line, point_Others)
%输入:点的xyz行向量,point_Others可以输入多个点

vec_l = point2_on_line - point1_on_line;
dis = zeros(size(point_Others,1),1);
for i=1:length(dis)
    dis(i) = norm(cross(vec_l,point_Others(i,:) - point1_on_line)) / norm(vec_l);
end

end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值