domain adapation(领域自适应)是迁移学习的一种,也是目前迁移学习中主要研究方向,旨在解决测试数据不方便采集、标注,耗时耗力等情况,希望通过迁移学习提高识别准确率。
解决方案
- 测试集有部分已经标注:
用已经标注的部分微调在训练集训练出来的模型。注意避免过拟合。
- 测试集未标注:
feature extractor:不同分布的相同部分提取出来(去除颜色信息,只保留形状)。信息相同(分布相同)的部分放入domain classifier中(目的让他分辨不出source/target),lebel predictor用于防止feature extractor投机取巧。