给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环。
请你判断这个图是否是二分图。
输入格式
第一行包含两个整数 n 和 m。
接下来 m 行,每行包含两个整数 u 和 v,表示点 u 和点 v 之间存在一条边。
输出格式
如果给定图是二分图,则输出 Yes
,否则输出 No
。
数据范围
1≤n,m≤105
输入样例:
4 4
1 3
1 4
2 3
2 4
输出样例:
Yes
DFS版
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10, M = 2 * N;
int n, m, idx;
int e[M], h[N], ne[M], color[N];
void add(int a, int b){
e[idx] = b;
ne[idx] = h[a];
h[a] = idx ++ ;
}
bool dfs(int u, int c){
color[u] = c;
for(int i = h[u]; ~ i; i = ne[i]){
int j = e[i];
if(!color[j]){
if(!dfs(j, 3 - c))
return false;
}
else if(color[j] == c)
return false;
}
return true;
}
int main(){
memset(h, -1, sizeof h);
cin >> n >> m;
while(m -- ){
int u, v;
cin >> u >> v;
add(u, v), add(v, u);
}
bool flag = true;
for(int i = 1; i <= n; i ++ ){
if(!color[i]){
if(!dfs(i, 1)){
flag = false;
break;
}
}
}
if(flag)
puts("Yes");
else
puts("No");
return 0;
}
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10, M = 2 * N;
int h[N], e[M], ne[M], color[N];
int n, m, idx;
void add(int a, int b){
e[idx] = b;
ne[idx] = h[a];
h[a] = idx ++ ;
}
int bfs(int u){
queue<int> q;
q.push(u);
color[u] = 1;
while(q.size()){
auto t = q.front();
q.pop();
for(int i = h[t]; ~ i; i = ne[i]){
int j = e[i];
if(!color[j]){
color[j] = 3 - color[t];
q.push(j);
}
else if(color[j] == color[t])
return false;
}
}
return true;
}
int main(){
memset(h, -1, sizeof h);
cin >> n >> m;
while(m -- ){
int u, v;
cin >> u >> v;
add(u, v), add(v, u);
}
bool flag = true;
for(int i = 1; i <= n; i ++ ){
if(!color[i]){
if(!bfs(i)){
flag = false;
break;
}
}
}
if(flag)
puts("Yes");
else
puts("No");
return 0;
}