【数学物理方程】方程标准化-特征线方程

本文介绍了如何判断并转化方程的类型,如双曲、抛物和椭圆,通过特征曲线找到自变量变换。涉及多个变量的特征二次型转化为平方和的方法,以及矩阵法和配方法的应用。提供了实例和作业题目,强调了化为标准形时无交叉项的特点,以及Poisson方程的识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何判断方程是什么型?并将方程化为标准形?

1.两个变量的怎么做?

判断方程类型- 双曲/抛物/椭圆

有哪些常见方程- 【【数学物理方程】简要概述 - CSDN】http://t.csdnimg.cn/9zC4P

注意此处原方程中b是指交叉项系数的二分之一。

双曲型方程的特征曲线可以解出两个实根--刚好两个,来作自变量变换。

抛物型方程的特征曲线可以解出一个实根--另一个取y,来作自变量变换。

椭圆型方程的特征曲线可以解出两个复特征根--取其中一个的实部和虚部,来作自变量变换依据。

a127a3c9ff1744b885afebc2b3105b28.png

例1:

先判断方程的类型--椭圆型方程,所以会有两个虚根,随便一个根都可以,取她的实部和虚部,做自变量变换。

(那么这个特征线方程是怎么得到的呢?记住上面写的公式)

bb7ef69070944497b8f6a15ef053f091.png

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值