波动方程与特征线法
公式有点多,建议电脑端看。
1、特征线法
(1) 特征线法自我总结
将方程转化为
∂
t
u
+
p
∂
x
u
=
q
\partial _t u+p \partial_x u=q
∂tu+p∂xu=q,则有两个常微分方程:
d
x
d
t
=
p
,
x
(
0
)
=
x
0
d
U
d
t
=
q
,
U
(
0
)
=
含
x
0
的
表
达
式
\begin{aligned} & \frac{dx}{dt}=p, x(0)=x_0\\ & \frac{dU}{dt}=q,U(0)=含x_0的表达式 \end{aligned}
dtdx=p,x(0)=x0dtdU=q,U(0)=含x0的表达式
先解出x(t),再写出U(t),U(t)中往往含有
x
0
x_0
x0,将
x
0
x_0
x0用含有x的式子表示。
(2)特征线法与初值问题
∂ t u + ( x + t ) ∂ x u + u = x , u ( x , 0 ) = x , x ∈ R , t > 0 ∴ d x d t = x + t , x ( 0 ) = x 0 d U d t + U = x ( t , t 0 ) , U ( 0 ) = x 0 \begin{aligned} & \partial_t u+(x+t)\partial_x u+u=x,u(x,0)=x,x\in \mathbb{R},t>0\\ & \therefore \frac{dx}{dt}=x+t, x(0)=x_0\\ & \frac{dU}{dt}+U=x(t,t_0),U(0)=x_0 \end{aligned} ∂tu+(x+t)∂xu+u=x,u(x,0)=x,x∈R,t>0∴dtdx=x+t,x(0)=x0dtdU+U=x(t,t0),U(0)=x0
2、齐次化原理与一维初值问题
对于如下一维波动方程的初值问题:
□
u
=
∂
t
t
u
−
a
2
Δ
u
\square u=\partial_{tt}u-a^2\Delta u
□u=∂ttu−a2Δu
□ u = f , u ( x , 0 ) = φ ( x ) , ∂ t u ( x , 0 ) = ψ ( x ) \square u=f,u(x,0)=\varphi(x),\partial_t u(x,0)=\psi(x) □u=f,u(x,0)=φ(x),∂tu(x,0)=ψ(x)
根据线性叠加原理,有:
□
u
1
=
0
,
u
1
(
x
,
0
)
=
φ
(
x
)
,
∂
t
u
1
(
x
,
0
)
=
0
;
□
u
2
=
0
,
u
2
(
x
,
0
)
=
0
,
∂
t
u
2
(
x
,
0
)
=
ψ
(
x
)
;
□
u
3
=
f
,
u
3
(
x
,
0
)
=
0
,
∂
t
u
3
(
x
,
0
)
=
0
;
\begin{aligned} & \square u_1=0,u_1(x,0)=\varphi(x),\partial_t u_1(x,0)=0;\\ & \square u_2=0,u_2(x,0)=0,\partial_t u_2(x,0)=\psi(x) ;\\ & \square u_3=f,u_3(x,0)=0,\partial_t u_3(x,0)=0;\\ \end{aligned}
□u1=0,u1(x,0)=φ(x),∂tu1(x,0)=0;□u2=0,u2(x,0)=0,∂tu2(x,0)=ψ(x);□u3=f,u3(x,0)=0,∂tu3(x,0)=0;
得到:初值问题的解:
u
=
u
1
+
u
2
+
u
3
u=u_1+u_2+u_3
u=u1+u2+u3
u
1
(
x
,
t
)
=
1
2
(
φ
(
x
+
a
t
)
+
φ
(
x
−
a
t
)
)
u
2
(
x
,
t
)
=
1
2
a
∫
x
−
a
t
x
+
a
t
ψ
(
ξ
)
d
ξ
u
3
(
x
,
t
)
=
1
2
a
∫
0
t
∫
x
−
a
(
t
−
τ
)
x
+
a
(
t
−
τ
)
d
(
ξ
,
τ
)
d
ξ
d
τ
\begin{aligned} & u_1(x,t)=\frac{1}{2}(\varphi(x+at)+\varphi(x-at))\\ & u_2(x,t)=\frac{1}{2a} \int_{x-at}^{x+at}\psi(\xi)d\xi\\ & u_3(x,t)=\frac{1}{2a} \int_0^t \int_{x-a(t-\tau)}^{x+a(t-\tau)}d(\xi, \tau)d\xi d\tau \end{aligned}
u1(x,t)=21(φ(x+at)+φ(x−at))u2(x,t)=2a1∫x−atx+atψ(ξ)dξu3(x,t)=2a1∫0t∫x−a(t−τ)x+a(t−τ)d(ξ,τ)dξdτ
所以,一维波动方程的初值问题的解为:
u
(
x
,
t
)
=
1
2
(
φ
(
x
+
a
t
)
+
φ
(
x
−
a
t
)
)
+
1
2
a
∫
x
−
a
t
x
+
a
t
ψ
(
ξ
)
d
ξ
+
1
2
a
∫
0
t
∫
x
−
a
(
t
−
τ
)
x
+
a
(
t
−
τ
)
d
(
ξ
,
τ
)
d
ξ
d
τ
u(x,t) =\frac{1}{2}(\varphi(x+at)+\varphi(x-at))+\frac{1}{2a} \int_{x-at}^{x+at}\psi(\xi)d\xi+\frac{1}{2a} \int_0^t \int_{x-a(t-\tau)}^{x+a(t-\tau)}d(\xi, \tau)d\xi d\tau
u(x,t)=21(φ(x+at)+φ(x−at))+2a1∫x−atx+atψ(ξ)dξ+2a1∫0t∫x−a(t−τ)x+a(t−τ)d(ξ,τ)dξdτ
当
f
≡
0
f \equiv 0
f≡0的时候,得到D’Alembert公式:
u
(
x
,
t
)
=
1
2
(
φ
(
x
+
a
t
)
+
φ
(
x
−
a
t
)
)
+
1
2
a
∫
x
−
a
t
x
+
a
t
ψ
(
ξ
)
d
ξ
u(x,t) =\frac{1}{2}(\varphi(x+at)+\varphi(x-at))+\frac{1}{2a} \int_{x-at}^{x+at}\psi(\xi)d\xi
u(x,t)=21(φ(x+at)+φ(x−at))+2a1∫x−atx+atψ(ξ)dξ
3、一维半无界定解问题
在半无界问题区域 Q ‾ = { 0 ≤ x < ∞ , 0 ≤ t < ∞ } \overline{Q}=\{0 \leq x< \infty,0\leq t <\infty\} Q={0≤x<∞,0≤t<∞}上考虑定解问题:
{
□
u
=
f
(
x
,
t
)
u
(
x
,
0
)
=
φ
(
x
)
∂
t
u
(
x
,
0
)
=
ψ
(
x
)
u
(
0
,
t
)
=
g
(
t
)
\begin{aligned} \left\{ \begin{array}{rcl} \square u & =f(x,t)\\ u(x,0) & =\varphi(x)\\ \partial_t u(x,0) & =\psi(x)\\ u(0,t) & =g(t) \end{array} \right . \end{aligned}
⎩⎪⎪⎨⎪⎪⎧□uu(x,0)∂tu(x,0)u(0,t)=f(x,t)=φ(x)=ψ(x)=g(t)
考虑
u
=
v
+
g
(
t
)
u=v+g(t)
u=v+g(t),所以得到:
{
□
v
=
f
(
x
,
t
)
v
(
x
,
0
)
=
φ
(
x
)
∂
t
v
(
x
,
0
)
=
ψ
(
x
)
v
(
0
,
t
)
=
0
\begin{aligned} \left\{ \begin{array}{rcl} \square v & =f(x,t)\\ v(x,0) & =\varphi(x)\\ \partial_t v(x,0) & =\psi(x)\\ v(0,t) & =0 \end{array} \right . \end{aligned}
⎩⎪⎪⎨⎪⎪⎧□vv(x,0)∂tv(x,0)v(0,t)=f(x,t)=φ(x)=ψ(x)=0
延拓法,将
f
,
φ
,
ψ
f,\varphi,\psi
f,φ,ψ延拓成奇函数,转化为初值问题,得到初值问题的解,然后按照
x
−
a
t
x-at
x−at的正负分类讨论,代入
f
,
φ
,
ψ
f,\varphi,\psi
f,φ,ψ:
当
x
≥
a
t
时
,
u
(
x
,
t
)
=
1
2
(
φ
(
x
+
a
t
)
+
φ
(
x
−
a
t
)
)
+
1
2
a
∫
x
−
a
t
x
+
a
t
ψ
(
ξ
)
d
ξ
+
1
2
a
∫
0
t
∫
x
−
(
t
−
τ
)
x
+
a
(
t
−
τ
)
f
(
ξ
,
τ
)
d
ξ
d
τ
当
x
<
a
t
时
,
u
(
x
,
t
)
=
1
2
(
φ
(
x
+
a
t
)
−
φ
(
a
t
−
x
)
)
+
1
2
a
∫
a
t
−
x
x
+
a
t
ψ
(
ξ
)
d
ξ
+
1
2
a
∫
t
−
x
a
t
∫
x
−
(
t
−
τ
)
x
+
a
(
t
−
τ
)
f
(
ξ
,
τ
)
d
ξ
d
τ
+
1
2
a
∫
0
t
−
x
a
∫
(
t
−
τ
)
−
x
x
+
a
(
t
−
τ
)
f
(
ξ
,
τ
)
d
ξ
d
τ
\begin{aligned} & 当x\geq at时,\\ & u(x,t)= \frac{1}{2}(\varphi(x+at)+\varphi(x-at))+\frac{1}{2a}\int_{x-at}^{x+at}\psi(\xi )d\xi+\frac{1}{2a}\int_0^t \int_{x-(t-\tau)}^{x+a(t-\tau)} f(\xi ,\tau)d\xi d\tau\\ & 当x<at时,\\ & u(x,t)= \frac{1}{2}(\varphi(x+at)-\varphi(at-x))+\frac{1}{2a}\int_{at-x}^{x+at}\psi(\xi )d\xi+\frac{1}{2a}\int_{t-\frac{x}{a}}^t \int_{x-(t-\tau)}^{x+a(t-\tau)} f(\xi ,\tau)d\xi d\tau\\ & +\frac{1}{2a}\int_0^{t-\frac{x}{a}} \int_{(t-\tau)-x}^{x+a(t-\tau)} f(\xi ,\tau)d\xi d\tau \end{aligned}
当x≥at时,u(x,t)=21(φ(x+at)+φ(x−at))+2a1∫x−atx+atψ(ξ)dξ+2a1∫0t∫x−(t−τ)x+a(t−τ)f(ξ,τ)dξdτ当x<at时,u(x,t)=21(φ(x+at)−φ(at−x))+2a1∫at−xx+atψ(ξ)dξ+2a1∫t−axt∫x−(t−τ)x+a(t−τ)f(ξ,τ)dξdτ+2a1∫0t−ax∫(t−τ)−xx+a(t−τ)f(ξ,τ)dξdτ
4、高维初值问题
从一维初值问题出发,通过球面平均法推导出三维波动方程初值问题的解的表达式,再通过降维法推导二维波动方程初值问题的解的表达式。
这里只是简单写了球面平均法,降维法以后再敲公式。高维的初值问题:
{ □ u = ∂ t t u − a 2 Δ u = f ( x , t ) u ( x , 0 ) = φ ( x ) ∂ t u ( x , 0 ) = ψ ( x ) \begin{aligned} \left\{ \begin{array}{l} \square u=\partial_{tt}u-a^2 \Delta u=f(x,t)\\ u(x,0)=\varphi(x)\\ \partial_{t}u(x,0)=\psi(x) \end{array} \right . \end{aligned} ⎩⎨⎧□u=∂ttu−a2Δu=f(x,t)u(x,0)=φ(x)∂tu(x,0)=ψ(x)
(1)三维波动方程的初值问题——球面平均法
我们同样有齐次化原理,只需要解出
u
2
u_2
u2的方程即可:
□
u
2
=
0
,
u
2
(
x
,
0
)
=
0
,
∂
t
u
2
(
x
,
0
)
=
ψ
(
x
)
;
\square u_2=0,u_2(x,0)=0,\partial_t u_2(x,0)=\psi(x) ;
□u2=0,u2(x,0)=0,∂tu2(x,0)=ψ(x);
我们将直角坐标转换为空间球坐标
(
r
,
θ
,
φ
)
(r,\theta,\varphi)
(r,θ,φ),则有:
1
a
2
∂
2
u
2
∂
t
2
=
1
r
2
∂
∂
r
(
r
2
∂
u
2
∂
r
)
+
1
r
2
sin
θ
∂
∂
θ
(
sin
θ
∂
u
2
∂
θ
)
+
1
r
2
sin
2
θ
∂
2
u
2
∂
φ
2
\frac{1}{a^2}\frac{\partial^2 u_2}{\partial t^2}=\frac{1}{r^2}\frac{\partial}{\partial r}(r^2 \frac{\partial u_2}{\partial r})+\frac{1}{r^2\sin \theta}\frac{\partial}{\partial \theta}(\sin \theta \frac{\partial u_2}{\partial \theta})+\frac{1}{r^2\sin ^2 \theta}\frac{\partial ^2 u_2}{\partial \varphi^2}
a21∂t2∂2u2=r21∂r∂(r2∂r∂u2)+r2sinθ1∂θ∂(sinθ∂θ∂u2)+r2sin2θ1∂φ2∂2u2
在球对称假设下(即
u
2
u_2
u2不依赖
θ
,
φ
\theta , \varphi
θ,φ),可以化简为:
1
a
2
∂
2
(
r
u
2
)
∂
t
2
=
∂
2
(
r
u
2
)
∂
r
2
\frac{1}{a^2}\frac{\partial ^2 (ru_2)}{\partial t^2}=\frac{\partial ^2 (r u_2)}{\partial r^2}
a21∂t2∂2(ru2)=∂r2∂2(ru2)
显然,球对称情况下,
r
u
2
ru_2
ru2满足一维波动方程,所以可以求出
u
2
u_2
u2然后再根据齐次化原理求出
u
1
,
u
3
u_1,u_3
u1,u3.