波动方程与特征线法

本文详细介绍了波动方程的求解方法,包括特征线法、齐次化原理及其在一维初值和半无界问题中的应用。通过球面平均法探讨了三维波动方程的解,并提出降维法来处理二维问题。内容涵盖了波动方程的基本解法和实际问题的求解策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

波动方程与特征线法

公式有点多,建议电脑端看。

1、特征线法

(1) 特征线法自我总结

将方程转化为 ∂ t u + p ∂ x u = q \partial _t u+p \partial_x u=q tu+pxu=q,则有两个常微分方程:
d x d t = p , x ( 0 ) = x 0 d U d t = q , U ( 0 ) = 含 x 0 的 表 达 式 \begin{aligned} & \frac{dx}{dt}=p, x(0)=x_0\\ & \frac{dU}{dt}=q,U(0)=含x_0的表达式 \end{aligned} dtdx=p,x(0)=x0dtdU=q,U(0)=x0
先解出x(t),再写出U(t),U(t)中往往含有 x 0 x_0 x0,将 x 0 x_0 x0用含有x的式子表示。

(2)特征线法与初值问题

∂ t u + ( x + t ) ∂ x u + u = x , u ( x , 0 ) = x , x ∈ R , t > 0 ∴ d x d t = x + t , x ( 0 ) = x 0 d U d t + U = x ( t , t 0 ) , U ( 0 ) = x 0 \begin{aligned} & \partial_t u+(x+t)\partial_x u+u=x,u(x,0)=x,x\in \mathbb{R},t>0\\ & \therefore \frac{dx}{dt}=x+t, x(0)=x_0\\ & \frac{dU}{dt}+U=x(t,t_0),U(0)=x_0 \end{aligned} tu+(x+t)xu+u=x,u(x,0)=x,xR,t>0dtdx=x+t,x(0)=x0dtdU+U=x(t,t0),U(0)=x0

2、齐次化原理与一维初值问题

对于如下一维波动方程的初值问题
□ u = ∂ t t u − a 2 Δ u \square u=\partial_{tt}u-a^2\Delta u u=ttua2Δu

□ u = f , u ( x , 0 ) = φ ( x ) , ∂ t u ( x , 0 ) = ψ ( x ) \square u=f,u(x,0)=\varphi(x),\partial_t u(x,0)=\psi(x) u=f,u(x,0)=φ(x),tu(x,0)=ψ(x)

根据线性叠加原理,有:
□ u 1 = 0 , u 1 ( x , 0 ) = φ ( x ) , ∂ t u 1 ( x , 0 ) = 0 ; □ u 2 = 0 , u 2 ( x , 0 ) = 0 , ∂ t u 2 ( x , 0 ) = ψ ( x ) ; □ u 3 = f , u 3 ( x , 0 ) = 0 , ∂ t u 3 ( x , 0 ) = 0 ; \begin{aligned} & \square u_1=0,u_1(x,0)=\varphi(x),\partial_t u_1(x,0)=0;\\ & \square u_2=0,u_2(x,0)=0,\partial_t u_2(x,0)=\psi(x) ;\\ & \square u_3=f,u_3(x,0)=0,\partial_t u_3(x,0)=0;\\ \end{aligned} u1=0,u1(x,0)=φ(x),tu1(x,0)=0;u2=0,u2(x,0)=0,tu2(x,0)=ψ(x);u3=f,u3(x,0)=0,tu3(x,0)=0;
得到:初值问题的解: u = u 1 + u 2 + u 3 u=u_1+u_2+u_3 u=u1+u2+u3
u 1 ( x , t ) = 1 2 ( φ ( x + a t ) + φ ( x − a t ) ) u 2 ( x , t ) = 1 2 a ∫ x − a t x + a t ψ ( ξ ) d ξ u 3 ( x , t ) = 1 2 a ∫ 0 t ∫ x − a ( t − τ ) x + a ( t − τ ) d ( ξ , τ ) d ξ d τ \begin{aligned} & u_1(x,t)=\frac{1}{2}(\varphi(x+at)+\varphi(x-at))\\ & u_2(x,t)=\frac{1}{2a} \int_{x-at}^{x+at}\psi(\xi)d\xi\\ & u_3(x,t)=\frac{1}{2a} \int_0^t \int_{x-a(t-\tau)}^{x+a(t-\tau)}d(\xi, \tau)d\xi d\tau \end{aligned} u1(x,t)=21(φ(x+at)+φ(xat))u2(x,t)=2a1xatx+atψ(ξ)dξu3(x,t)=2a10txa(tτ)x+a(tτ)d(ξ,τ)dξdτ
所以,一维波动方程的初值问题的解为:
u ( x , t ) = 1 2 ( φ ( x + a t ) + φ ( x − a t ) ) + 1 2 a ∫ x − a t x + a t ψ ( ξ ) d ξ + 1 2 a ∫ 0 t ∫ x − a ( t − τ ) x + a ( t − τ ) d ( ξ , τ ) d ξ d τ u(x,t) =\frac{1}{2}(\varphi(x+at)+\varphi(x-at))+\frac{1}{2a} \int_{x-at}^{x+at}\psi(\xi)d\xi+\frac{1}{2a} \int_0^t \int_{x-a(t-\tau)}^{x+a(t-\tau)}d(\xi, \tau)d\xi d\tau u(x,t)=21(φ(x+at)+φ(xat))+2a1xatx+atψ(ξ)dξ+2a10txa(tτ)x+a(tτ)d(ξ,τ)dξdτ
f ≡ 0 f \equiv 0 f0的时候,得到D’Alembert公式:
u ( x , t ) = 1 2 ( φ ( x + a t ) + φ ( x − a t ) ) + 1 2 a ∫ x − a t x + a t ψ ( ξ ) d ξ u(x,t) =\frac{1}{2}(\varphi(x+at)+\varphi(x-at))+\frac{1}{2a} \int_{x-at}^{x+at}\psi(\xi)d\xi u(x,t)=21(φ(x+at)+φ(xat))+2a1xatx+atψ(ξ)dξ

3、一维半无界定解问题

在半无界问题区域 Q ‾ = { 0 ≤ x < ∞ , 0 ≤ t < ∞ } \overline{Q}=\{0 \leq x< \infty,0\leq t <\infty\} Q={0x<,0t<}上考虑定解问题:

{ □ u = f ( x , t ) u ( x , 0 ) = φ ( x ) ∂ t u ( x , 0 ) = ψ ( x ) u ( 0 , t ) = g ( t ) \begin{aligned} \left\{ \begin{array}{rcl} \square u & =f(x,t)\\ u(x,0) & =\varphi(x)\\ \partial_t u(x,0) & =\psi(x)\\ u(0,t) & =g(t) \end{array} \right . \end{aligned} uu(x,0)tu(x,0)u(0,t)=f(x,t)=φ(x)=ψ(x)=g(t)
考虑 u = v + g ( t ) u=v+g(t) u=v+g(t),所以得到:
{ □ v = f ( x , t ) v ( x , 0 ) = φ ( x ) ∂ t v ( x , 0 ) = ψ ( x ) v ( 0 , t ) = 0 \begin{aligned} \left\{ \begin{array}{rcl} \square v & =f(x,t)\\ v(x,0) & =\varphi(x)\\ \partial_t v(x,0) & =\psi(x)\\ v(0,t) & =0 \end{array} \right . \end{aligned} vv(x,0)tv(x,0)v(0,t)=f(x,t)=φ(x)=ψ(x)=0
延拓法,将 f , φ , ψ f,\varphi,\psi f,φ,ψ延拓成奇函数,转化为初值问题,得到初值问题的解,然后按照 x − a t x-at xat的正负分类讨论,代入 f , φ , ψ f,\varphi,\psi f,φ,ψ
当 x ≥ a t 时 , u ( x , t ) = 1 2 ( φ ( x + a t ) + φ ( x − a t ) ) + 1 2 a ∫ x − a t x + a t ψ ( ξ ) d ξ + 1 2 a ∫ 0 t ∫ x − ( t − τ ) x + a ( t − τ ) f ( ξ , τ ) d ξ d τ 当 x < a t 时 , u ( x , t ) = 1 2 ( φ ( x + a t ) − φ ( a t − x ) ) + 1 2 a ∫ a t − x x + a t ψ ( ξ ) d ξ + 1 2 a ∫ t − x a t ∫ x − ( t − τ ) x + a ( t − τ ) f ( ξ , τ ) d ξ d τ + 1 2 a ∫ 0 t − x a ∫ ( t − τ ) − x x + a ( t − τ ) f ( ξ , τ ) d ξ d τ \begin{aligned} & 当x\geq at时,\\ & u(x,t)= \frac{1}{2}(\varphi(x+at)+\varphi(x-at))+\frac{1}{2a}\int_{x-at}^{x+at}\psi(\xi )d\xi+\frac{1}{2a}\int_0^t \int_{x-(t-\tau)}^{x+a(t-\tau)} f(\xi ,\tau)d\xi d\tau\\ & 当x<at时,\\ & u(x,t)= \frac{1}{2}(\varphi(x+at)-\varphi(at-x))+\frac{1}{2a}\int_{at-x}^{x+at}\psi(\xi )d\xi+\frac{1}{2a}\int_{t-\frac{x}{a}}^t \int_{x-(t-\tau)}^{x+a(t-\tau)} f(\xi ,\tau)d\xi d\tau\\ & +\frac{1}{2a}\int_0^{t-\frac{x}{a}} \int_{(t-\tau)-x}^{x+a(t-\tau)} f(\xi ,\tau)d\xi d\tau \end{aligned} xatu(x,t)=21(φ(x+at)+φ(xat))+2a1xatx+atψ(ξ)dξ+2a10tx(tτ)x+a(tτ)f(ξ,τ)dξdτx<atu(x,t)=21(φ(x+at)φ(atx))+2a1atxx+atψ(ξ)dξ+2a1taxtx(tτ)x+a(tτ)f(ξ,τ)dξdτ+2a10tax(tτ)xx+a(tτ)f(ξ,τ)dξdτ

4、高维初值问题

从一维初值问题出发,通过球面平均法推导出三维波动方程初值问题的解的表达式,再通过降维法推导二维波动方程初值问题的解的表达式。
这里只是简单写了球面平均法,降维法以后再敲公式。

高维的初值问题:
{ □ u = ∂ t t u − a 2 Δ u = f ( x , t ) u ( x , 0 ) = φ ( x ) ∂ t u ( x , 0 ) = ψ ( x ) \begin{aligned} \left\{ \begin{array}{l} \square u=\partial_{tt}u-a^2 \Delta u=f(x,t)\\ u(x,0)=\varphi(x)\\ \partial_{t}u(x,0)=\psi(x) \end{array} \right . \end{aligned} u=ttua2Δu=f(x,t)u(x,0)=φ(x)tu(x,0)=ψ(x)

(1)三维波动方程的初值问题——球面平均法

我们同样有齐次化原理,只需要解出 u 2 u_2 u2的方程即可:
□ u 2 = 0 , u 2 ( x , 0 ) = 0 , ∂ t u 2 ( x , 0 ) = ψ ( x ) ; \square u_2=0,u_2(x,0)=0,\partial_t u_2(x,0)=\psi(x) ; u2=0,u2(x,0)=0,tu2(x,0)=ψ(x);
我们将直角坐标转换为空间球坐标 ( r , θ , φ ) (r,\theta,\varphi) (r,θ,φ),则有:
1 a 2 ∂ 2 u 2 ∂ t 2 = 1 r 2 ∂ ∂ r ( r 2 ∂ u 2 ∂ r ) + 1 r 2 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ u 2 ∂ θ ) + 1 r 2 sin ⁡ 2 θ ∂ 2 u 2 ∂ φ 2 \frac{1}{a^2}\frac{\partial^2 u_2}{\partial t^2}=\frac{1}{r^2}\frac{\partial}{\partial r}(r^2 \frac{\partial u_2}{\partial r})+\frac{1}{r^2\sin \theta}\frac{\partial}{\partial \theta}(\sin \theta \frac{\partial u_2}{\partial \theta})+\frac{1}{r^2\sin ^2 \theta}\frac{\partial ^2 u_2}{\partial \varphi^2} a21t22u2=r21r(r2ru2)+r2sinθ1θ(sinθθu2)+r2sin2θ1φ22u2

在球对称假设下(即 u 2 u_2 u2不依赖 θ , φ \theta , \varphi θ,φ),可以化简为:
1 a 2 ∂ 2 ( r u 2 ) ∂ t 2 = ∂ 2 ( r u 2 ) ∂ r 2 \frac{1}{a^2}\frac{\partial ^2 (ru_2)}{\partial t^2}=\frac{\partial ^2 (r u_2)}{\partial r^2} a21t22(ru2)=r22(ru2)
显然,球对称情况下, r u 2 ru_2 ru2满足一维波动方程,所以可以求出 u 2 u_2 u2然后再根据齐次化原理求出 u 1 , u 3 u_1,u_3 u1,u3.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值