图论(7)负环和差分约束

一、概念

给定一张有向图,如果存在一个环,环上各边权值之和是负数,则称这个环为负环。

判断方式:bellman-ford算法和spfa算法。+抽屉原理

这里只介绍spfa。设立cnt数组表示从1到x的最短路径包含的边数,如果cnt[i]大于等于n,则存在负环。

二、例题

904. 虫洞

 虫洞是负边,存在负环则true。

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;

const int N =510,M=5210;

int f,n,m1,m2;
int dist[N];
int h[N],e[M],ne[M],w[M],idx;
bool st[N];
int cnt[N];
int q[N];

void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

bool spfa()
{
    memset(dist,0,sizeof dist);
    memset(cnt, 0, sizeof cnt);
    queue<int> q;
    for(int i=1;i<=n;i++)
    {
        q.push(i);
        st[i]=true;
    }

    while(q.size())
    {
        int t=q.front();
        q.pop();
        st[t]=false;

        for(int i=h[t];~i;i=ne[i])
        {
            int j=e[i];
            if(dist[j]>dist[t]+w[i])
            {
                dist[j]=dist[t]+w[i];
                cnt[j]=cnt[t]+1;
                if(cnt[j]>=n) return true;
                if(!st[j])
                {
                    st[j]=true;
                    q.push(j);
                }
            }
        }
    }
    return false;
}


int main()
{
    cin>>f;
    while(f--)
    {
        cin>>n>>m1>>m2;
        memset(h,-1,sizeof h);
        idx=0;

        for(int i=0;i<m1;i++)
        {
            int a,b,c;
            cin>>a>>b>>c;
            add(a,b,c),add(b,a,c);
        }
        for(int i=0;i<m2;i++)
        {
            int a,b,c;
            cin>>a>>b>>c;
            add(a,b,-c);
        }
        if(spfa()) puts("YES");
        else puts("NO");
    }
    return 0;
}

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/4455339/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 361. 观光奶牛

 这个和01分数规划有关,涉及01分数规划,一般会用二分。

设二分答案为mid:

1.如果图中存在一个环,若\sum w(e)*mid-\sum w(v)<0,则说明

\exists S=\left \{ v,e \right \} \ \ st.\frac{\sum w(v)}{\sum w(e)}>mid

即本题所求的最大值大于mid

2如果对任意的环,都大于等于0,则说明最大值小于等于mid。

因此可以二分,并且我们发现(1)中的环,实际上可以替代为:没有点权,边权e(x,y)的权值是mid*w(e)-w(x),即本来的边权乘以mid再减去入点的权值。的这样一个环。因此可以构建一个新图。

(1)中的条件变为,这样的新图有负环。

因此二分求解答案即可。

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;

const int N =1010,M=5010;

int n,m;
int wf[N];
int h[N],e[M],ne[M],wt[M],idx;
bool st[N];
int cnt[N];
double dist[N];
int q[N];

void add(int a,int b,int c)
{
    e[idx]=b,wt[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

bool check(double  mid)
{
    memset(dist,0,sizeof dist);
    memset(cnt,0,sizeof cnt);
    memset(st,0,sizeof st);
    queue<int> q;

    for(int i=1;i<=n;i++)
    {
        st[i]=true;
        q.push(i);
    }
    while(q.size())
    {
        int t=q.front();
        q.pop();
        st[t]=false;

        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]>dist[t]+mid*wt[i]-wf[t])
            {
                dist[j]=dist[t]+mid*wt[i]-wf[t];
                cnt[j]=cnt[t]+1;
                if(cnt[j]>=n) return true;
                if(!st[j])
                {
                    st[j]=true;
                    q.push(j);
                }
            }
        }
    }
    return false;

}


int main()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++) cin>>wf[i];
    memset(h,-1,sizeof h);

    for(int i=0;i<m;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }
    double l=0,r=1e6;
    while(r-l>1e-4)
    {
        double mid=(l+r)/2;
        if(check(mid)) l=mid;
        else r=mid;
    }
    printf("%.2lf",l);
    return 0;


}

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/4455633/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

1165. 单词环

 

 分析:

  1. 建图:最直观的建图方式,是把每个单词看做节点,然后连接可接龙的单词。但是这样最多有1e5个点,有1e10条边,存不下。因此要换方法。考虑一个对偶的建图方式,将每一个单词看作一条边,其开头两个字符和结尾两个字符为它两边的点。这样建图的话,节点数就缩小到了676个(26∗26)边数为1e5条。
  2. 01分数规划:我们要求\frac{\sum len}{s}=k的最大值,设二分答案mid。当k>mid时:\sum len-s*mid>0,因此我们把边权设置为len[i]−mid。
  3. 优化:spfa求负环时,可能一直跑不出结果。可以采取一种比较取巧的方法:当求最长路时,经过的点大于某一个数时,我们就可以武断地认为当前图中存在一个正环.
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;

const int N =700,M=100010;

int n;
double dist[N];
int cnt[N];
int h[N],e[M],ne[M],w[M],idx;
bool st[N];

void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

bool check(double mid)
{
    queue<int> q;
    memset(dist,0,sizeof dist);
    memset(cnt,0,sizeof cnt);
    memset(st,0,sizeof st);

    for(int i=0;i<676;i++)
    {
        st[i]=true;
        q.push(i);
    }

    int count=0;
    while(q.size())
    {
        int t=q.front();
        q.pop();
        st[t]=false;
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]>dist[t]+mid-w[i])
            {
                dist[j]=dist[t]+mid-w[i];
                if(++count>10000) return true;
                cnt[j]=cnt[t]+1;
                if(cnt[j]>=N) return true;
                if(!st[j])
                {
                    st[j]=true;
                    q.push(j);
                }
            }
        }
    }
    return false;
}

int main()
{
    char str[1010];
    while(cin>>n,n)
    {
        memset(h,-1,sizeof h);
        idx=0;

        for(int i=0;i<n;i++)
        {
            cin>>str;
            int len=strlen(str);
            if(len>=2)
            {
                int left=(str[0] - 'a') * 26 + str[1] - 'a';
                int right = (str[len - 2] - 'a') * 26 + str[len - 1] - 'a';
                add(left,right,len);
            }
        }

        if(!check(0)) puts("No solution");
        else
        {
            double l=0,r=1010;
            while(r-l>1e-5)
            {
                double mid=(l+r)/2;
                if(check(mid)) l=mid;
                else r=mid;
            }
            printf("%.2lf\n",r);
        }
    }
    return 0;
}

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/4455934/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

三、差分约束

差分约束就是一组N元一次不等式。给出了多个约束条件形如:X_i-X_j\leqslant c_k。我们要解决的问题就是求出一组X,使得所有约束条件得到满足。

我们可以把X_i-X_j\leqslant c_k看做 j 节点向 i 节点连一条长度为ck的有向边。

则如果a1 a2....an是一组解,则对任意的常数delta,a+delta也是一组解。所以不妨先求一组负数解。假设所有ai小于等于0。我们再增加一个超级原点a0=0,则多了N个形如a_i-a_0\leqslant 0的约束条件。即我们把0号点向所有点连一条长度为0的边。

在我们建的图上跑最短路,如果存在负环,则说明有ai<ai,这是不可能满足的,所以差分系统无解,否则,ai=dist[i]就是一组解。

如果约束条件不等号反向,我们仍然可以不改变图,只不过改为计算单源最长路,如果有正环则无解。

 参考:AcWing 1169. 糖果 - AcWing

AcWing 1169. 糖果 - AcWing 

也就是说,如果是求最小值,则求最长路。求最大值,则求最短路。

四、例题

1169. 糖果

 

 注意超级原点。因此本题求最小值,跑最长路判断即可,判断有无正环

#include<iostream>
#include<algorithm>
#include<cstring>
#include<stack>
using namespace std;


const int N =1e5+10,M=3e5+10;

int n,m;
int h[N],e[M],ne[M],w[M],idx;
long long  dist[N];
bool st[N];
int cnt[N];


void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

int spfa()
{
    memset(dist,-0x3f,sizeof dist);
    dist[0]=0;
    stack<int> q;
    q.push(0);
    st[0]=true;

    while(q.size())
    {
        int t=q.top();
        q.pop();
        st[t]=false;

        for(int i=h[t];~i;i=ne[i])
        {
            int j=e[i];
            if(dist[j]<dist[t]+w[i])
            {
                dist[j]=dist[t]+w[i];
                cnt[j]=cnt[t]+1;

                if(cnt[j]>=n+1) return false;
                if(!st[j]) 
                {
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
    return true;
}

int main()
{
    cin>>n>>m;
    memset(h,-1,sizeof h);
    for(int i=0;i<m;i++)
    {
        int a,b,x;
        cin>>x>>a>>b;
        if(x==1) add(a,b,0),add(b,a,0);
        else if(x==2) add(a,b,1);
        else if(x==3) add(b,a,0);
        else if(x==4) add(b,a,1);
        else add(a,b,0);
    }

    for(int i=1;i<=n;i++) add(0,i,1);

    if(!spfa()) cout<<"-1";
    else 
    {
        long long  res=0;
        for(int i=1;i<=n;i++) res+=dist[i];
        cout<<res;
    }


}

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/4482434/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

362. 区间(前缀和)

 AcWing 362. 区间 - AcWing

 

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;

const int N =5e4+10,M=2e5;

int n;
int h[N],e[M],ne[M],w[M],idx;
int dist[N];
bool st[N];

void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

void spfa()
{
    memset(dist,-0x3f,sizeof dist);
    queue<int> q;
    dist[0]=0;
    q.push(0);
    st[0]=true;
    
    while(q.size())
    {
        int t=q.front();
        q.pop();
        st[t]=false;
        
        for(int i=h[t];~i;i=ne[i])
        {
            int j=e[i];
            if(dist[j]<dist[t]+w[i])
            {
                dist[j]=dist[t]+w[i];
                if(!st[j])
                {
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
}

int main()
{
    cin>>n;
    memset(h,-1,sizeof h);
    
    for(int i=1;i<N;i++)
    {
        add(i,i-1,-1);
        add(i-1,i,0);
    }
    
    for(int i=0;i<n;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        a++,b++;
        add(a-1,b,c);
    }
    
    spfa();
    cout<<dist[50001];
    
}

1170. 排队布局

 无穷即判断1号点和n号点有无约束关系即,即连不连通。

 

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>

using namespace std;

const int N =1010,M=10000+10000+1010,INF=0x3f3f3f3f;

int n,m1,m2;
int dist[N];
bool st[N];
int h[N],e[M],ne[M],w[M],idx;
int cnt[N];

void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}

bool spfa(int size)
{
    memset(dist,0x3f,sizeof dist);
    memset(st,0,sizeof st);
    memset(cnt,0,sizeof cnt);
    queue<int> q;

    for(int i=1;i<=size;i++)
    {
        q.push(i);
        st[i]=true;
        dist[i]=0;
    }
    while(q.size())
    {
        int t=q.front();
        q.pop();
        st[t]=false;

        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]>dist[t]+w[i])
            {
                dist[j]=dist[t]+w[i];
                cnt[j]=cnt[t]+1;
                if(cnt[j]>=n) return true;
                if(!st[j])
                {
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
    return false;
}

int main()
{
    cin>>n>>m1>>m2;
    memset(h,-1,sizeof h);
    for(int i=1;i<n;i++) add(i+1,i,0);

    for(int i=0;i<m1;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        if(a>b) swap(a,b);
        add(a,b,c);
    }
    for(int i=0;i<m2;i++)
    {
        int a,b,c;
        cin>>a>>b>>c;
        if(a>b) swap(a,b);
        add(b,a,-c);
    }

    if(spfa(n)) puts("-1");//出现矛盾 有负环
    else
    {
        spfa(1);
        if(dist[n]==INF) puts("-2");
        else cout<<dist[n];
    }
    return 0;
}

作者:yankai
链接:https://www.acwing.com/activity/content/code/content/4494625/
来源:AcWing
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

393. 雇佣收银员

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值