图论——负环
笔记:
1: 通用算法:SPFA
O
(
m
)
O(m)
O(m)~
O
(
n
m
)
O(nm)
O(nm)
2: 如何判断负环?有
2
2
2种方法,第
1
1
1种是 Bellman-ford 判负环方法,每入队一次相当于更新一次,当入队次数
>
=
n
>=n
>=n 时 确定存在负环 ,时间复杂度
O
(
n
2
)
O(n^2)
O(n2) 太慢 。第
2
2
2种是常用方法时间复杂度是
O
(
n
2
)
O(n^2)
O(n2) 统计每个点所在的最短路中边的条数。一旦边的条数
>
=
n
>=n
>=n时说明至少存在
n
+
1
n+1
n+1 个点,这与仅有
n
n
n 个点相悖,因此存在负环。
3: 虚拟源点的建立,在图上建立一个 虚拟源点 ,使其到
n
n
n个点的距离为
0
0
0,为啥要建立虚拟源点?因为不能保证这个图是能通过一个点就能全走到的,也就是图不一定完全联通。因此我们开辟一个虚拟源点,将所有点全部入队,进而可以进行 不漏过每一个负环 的松弛操作。
4: 玄学判环,可知 SPFA 算法最坏的时间复杂度是
O
(
n
m
)
O(nm)
O(nm),有些题目存在负环如果直接去做可能无法在规定时间内完成判断负环,那么此时就可以进行一个猜想,当所有点入队次数超过
2
n
2n
2n次我们即可猜想存在负环,当然如果要卡是肯定可以卡的,但大部分题此方法适用。
题目练习专场:
虫洞
方法:
- 首先建好图发现是一个比较裸的判负环题,但是需要注意此题 需要建立虚拟源点 因为我们无法得知究竟从哪一片田地出发,所以将所有点全部入队,直至出现 存在 n n n条边的短路 ,判定存在负环,否则不存在负环。
代码:
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n,m,ww;
const int N = 510,M = 5210;
int h[N],ne[M],e[M],w[M],idx;
int cnt[N];
bool st[N];
int dist[N];
void add(int a,int b,int c){
e[idx]=b;
w[idx]=c;
ne[idx]=h[a];
h[a]=idx++;
}
bool spfa(){
queue<int>q;
memset(dist,0,sizeof dist);//建立虚拟源点,所有点dist为0
memset(st,false,sizeof st);
memset(cnt,0,sizeof cnt);
for(int i=1;i<=n;i++){
q.push(i);
st[i]=true;
}
while(q.size()){
auto x=q.front();
q.pop();
st[x]=false;
for(int i=h[x];i!=-1;i=ne[i]){
int j=e[i];
if(dist[j]>dist[x]+w[i]){
dist[j]=dist[x]+w[i];
cnt[j]=cnt[x]+1;
if(cnt[j]>=n)return true;
if(!st[j]){
st[j]=true;
q.push(j);
}
}
}
}
return false;
}
signed main(){
int t;
cin>>t;
while(t--){
memset(h,-1,sizeof h);
idx=0;
cin>>n>>m>>ww;
for(int i=1;i<=m;i++){
int u,v,ti;
cin>>u>>v>>ti;
add(u,v,ti);
add(v,u,ti);
}
for(int i=1;i<=ww;i++){
int u,v,ti;
cin>>u>>v>>ti;
add(u,v,-ti);
}
//建图完成
bool ok = spfa();
cout<<(ok?"YES":"NO")<<endl;
}
return 0;
}