背包问题(DP)

第 i 件物品的体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

解答:

#include <iostream>
using namespace std;
int n,m;     //n为商品个数,m为背包体积
int dp[1001][1001];
int main()
{
    cin>>n>>m;
    int v[n],p[n];   //v[i]、p[i]分别为第i件商品的体积和价值
    for(int i=0;i<n;i++){
        cin>>v[i]>>p[i];
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            if(j>=v[i-1]){
                dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i-1]]+p[i-1]);
            }
            else{
                dp[i][j]=dp[i-1][j];
            }
        }
    }
    cout<<dp[n][m];
    return 0;
}

思路图:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值