一、什么是高阶网络
传统的网络中,一条边连接两个节点,但高阶网络中的边却不止两个节点。高阶网络的一种表达形式是超网络(Hypernetwork),超网络是网络的扩展,其连边可以连接多个节点而非仅仅两个,被称为超边(hyperlink),超网络由超边组成。另一种对高阶相互作用建模的方式是单纯复形(Simplicial complex),例如,将 k+1 个节点之间的所有连接点亮,就形成 k 阶单形(k-simplex),单形进一步连接组成单纯复形。
二、高阶网络中的同步现象
同步现象对应于,一个相互作用的动力学系统将其运动的某些性质调整为一个共同的动力学过程,相互作用模式对同步的出现起着决定性作用。同步被认为是复杂网络动力学理论中的一个重要现象,在物理、生物和技术系统中有着重要的应用。
关于同步的一些重要发现:
1. 对于包含三主体的互作,已证明在互作强度超过临界强度后,在一个相位振荡器网络中,可以产生无限多个稳定同步吸引子[11]。
2. 由于存在无数个稳定的部分均衡态(partial stable point),在三主体系统能够观察到连续突变的去同步现象。
3. 高阶网络中简单复形的互作,能够带来突发的同步和去同步现象,能够在存在两两互斥的相互作用下,使强同步的系统稳定,该现象已在英国电网和恒河猴大脑网络中被证实[12]。
4. 通过一个适合任意阶的高阶网络,存在一个一般的框架,可使网络中的同步现象稳定下来[13],该研究论证了完全的同步可以是一个不变解,并提供了同步解存在的必要条件。
三、高阶网络建模社会网络动力学
3.1 高阶网络中的传染过程
1. 在SIS(易感-感染-易感)和SIR(易感-感染-恢复)模型中,当存在高阶互作时,流行病的传播阈值和流行程度与不存在高阶互作时不同。[16]
2. 基于单纯复形模型,可证明并通过数值模拟说明,存在连续和非连续的突变,可以在双稳定点之间切换,且存在迟滞效应(hysteresis)[17]。
3. 在超图上的SIS模型中,当度数相关性满足特定条件时,三元组互作的节点度数非均一分布,可以抑制一阶突变的发生[18]。
4. 对于发生在办公室和家庭这样涉及多人、具有异质性的时序传播动力学,可采用高阶网络建模,能捕捉之前被忽略的问题[19]。
3.2 高阶网络中的共识形成
1. 在高阶网络(三体系统)中,只有当存在非线性相互作用的时候,多体系统才能有效地形成共识。由于引入了非线性函数,涌现的动力学导致了系统状态发生远离平均态度的偏移。[20]
2. 在超图上的有限信心模型中,会出现个体的意见由一个聚簇突然跳跃到另一个聚簇的观念跳跃,这在只考虑三元互作时是不会出现的。[21]
3. 对于存在社区结构(community structure)的超图,网络演化会导致回音室的出现。相比连接数较少的超边,连接数更多的超边对共识形成有决定性意义[22]。
4. 在一个通过单纯复形建模高阶互作的自适应的选举者模型中,同伴压力会加速单一观点状态和两种观点状态间的转换,这种加速是双向的。[23]
3.3 高阶网络上的演化博弈
在包括微生物和人类社会在内的各种实际系统中都可以观察到合作行为,个体为了相互利益在群体中共同发挥作用。在探索受群体相互作用影响的种群中的演化博弈动力学中,高阶相互作用不同于成对相互作用导致的收益之和,即一个人在高阶相互作用中的收益,会由于非线性导致不同的动力学过程[24]。
关键发现:
1. 更大的群体规模,有助于保持二元互动网络中的合作,而这是在只考虑三元相互作用时无法维持的。[24]
2. 受高阶结构影响的人群中的信号传递游戏,在发送者-接收者游戏中诚实度的动态演化,会呈现一种不同形式的战略互动,即使存在说谎的诱惑,诚实的策略依然可以维持,这不同于二元互作单独存在的场景。此外,高阶互作的存在,使得即使当谎言对接受者有利时,由于发送者要付出代价,使得道德策略依然可以维持[25]。
3. 在诸如囚徒困境这样的博弈中,1阶和2阶单纯复形组成的网络,会呈现不同的纳什均衡点,这意味着多人博弈会导致非优势策略的出现及其与优势策略的共存,此外,该研究还关注高阶互作存在时,从欺骗占主导的策略到合作占主导的策略之间的转变[26]。
4. 在度数均匀的高阶网络中的演化博弈,当超边间的关联是固定的时候,等价于在一个完全混合的群体中的博弈。不同阶数和度数分布异质性对演化博弈结果特征的影响也得到了进一步研究[27]