【COMP337 LEC3】

LEC 3 

Mathematical Preliminaries

Common Discrete Probability Distributions
1. Bernoulli distribution : 伯努利分布
models binary outcomes (coin flip). 模型二进制结果
P ( X = head ) = p and P ( X = tail ) = 1 − p
2.  Generalised Bernoulli distribution : 广义伯努利分布
models k > 2 outcomes (rolls of a sided die)

3. Binomial distribution: 二项式分布

models a sequence of multiple flip 模拟一个硬币的多次翻转的序列

4. Multinomial distribution: 多项分布

models a sequence of multiple rolls of a -sided die for k>2

If there are rolls and is the number of times the die came up on side , then the probability of this event is

Missing value

解决缺失值的方法:
1.discard 
2.  fill in values by hand
3. set “missingValue”
4.  replace with the mean 用两个数之间的平均值来代替这个缺失的值
   但是如果出现了一个outlier,那么就会很不准确
5. predict
We can train a new classifier to first predict the missing values in data instances and then train a second classifier to predict the target class using all (original + missing values predicted) the data points.
6.  accept missing values

Noisy value

Over-fitting vs. Under-fitting

过拟合 over-fitting:用于训练集的效果太好,而测试机的效果不好

Feature Normalisation

方法二:高斯归一化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值