Hadoop3.1.3部署汇总

Hadoop

1.Hadoop 概述

1.1 Hadoop 是什么

(1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构

(2)主要解决海量数据的存储和海量数据的分析计算问题

(3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈

1.2 Hadoop 优势

(1)高可靠性:Hadoop底层维护多个数据副本,所以即使Hadoop某个计算元素或存储出现故障,也不会导致数据的丢失。

(2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。

(3)高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。

(4)高容错性:能够自动将失败的任务重新分配。

1.3 Hadoop 组成(面试重点)

在这里插入图片描述

在Hadoop1.x 时代,Hadoop中的MapReduce同时处理业务逻辑运算和资源的调度,耦合性较大。 在Hadoop2.x时代,增加了Yarn。Yarn只负责资源的调度,MapReduce 只负责运算。 Hadoop3.x在组成上没有变化。

1.3.1 HDFS 架构概述

Hadoop Distributed File System,简称HDFS,是一个分布式文件系统。

(1)NameNode(nn):存储文件的元数据,如文件名文件目录结构文件属性(生成时间、副本数、文件权限),以及每个文件的块列表块所在的DataNode等。

(2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和

(3)Secondary NameNode(2nn):每隔一段时间对NameNode元数据备份

1.3.2 YARN 架构概述

Yet Another Resource Negotiator 简称YARN ,另一种资源协调者,是Hadoop 的资源管理器。

在这里插入图片描述

ResourceManager(RM):整个集群资源(内存、CPU等)的管理者

NodeManager(NM):单个节点服务器资源的管理者。

ApplicationMaster(AM):单个任务运行的管理者。

Container:容器,相当于一台独立的服务器,里面封装了任务运行所需要的资源,如内存、CPU、磁盘、网络等。

说明:

(1)客户端可以有多个

(2)集群上可以运行多个ApplicationMaster

(3)每个NodeManager上可以有多个Container

1.3.3 MapReduce 架构概述

MapReduce 将计算过程分为两个阶段:Map 和Reduce 1)Map 阶段并行处理输入数据 2)Reduce 阶段对Map 结果进行汇总

在这里插入图片描述

1.3.4 HDFS、YARN、MapReduce 三者关系

如图所示:

在这里插入图片描述

1.3.5 大数据技术生态体系

如图所示: 在这里插入图片描述

图中涉及的技术名词解释如下:

(1)Sqoop:Sqoop 是一款开源的工具,主要用于在Hadoop、Hive 与传统的数据库(MySQL)间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进到Hadoop 的HDFS 中,也可以将HDFS 的数据导进到关系型数据库中。

(2)Flume:Flume 是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume 支持在日志系统中定制各类数据发送方,用于收集数据。 (3)Kafka:Kafka 是一种高吞吐量的分布式发布订阅消息系统。

(4)Spark:Spark 是当前最流行的开源大数据内存计算框架。可以基于Hadoop 上存储的大数据进行计算。

(5)Flink:Flink 是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。

(6)Oozie:Oozie 是一个管理Hadoop 作业(job)的工作流程调度管理系统。

(7)Hbase:HBase 是一个分布式的、面向列的开源数据库。HBase 不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。

(8)Hive:Hive 是基于Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL 查询功能,可以将SQL 语句转换为MapReduce 任务进行运行。其优点是学习成本低,可以通过类SQL 语句快速实现简单的MapReduce 统计,不必开发专门的MapReduce 应用,十分适合数据仓库的统计分析。

(9)ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。

1.3.6 推荐系统框架图

推荐系统项目框架

在这里插入图片描述

1.3.7 常用端口号说明

在这里插入图片描述

2. Hadoop 完全分部署运行环境搭建

环境说明:

容器 容器ip
master 192.168.1.10
slave1 192.168.1.20
slave2 192.168.1.30

2.1 配置主机名

hostnamectl set-hostname master && bash
hostnamectl set-hostname slave1 && bash
hostnamectl set-hostname slave2 && bash

2.2 修改hosts,添加映射,关闭防火墙

所有节点执行

[root@master ~]# cat /etc/hosts
127.0.0.1	localhost
::1	localhost ip6-localhost ip6-loopback
fe00::0	ip6-localnet
ff00::0	ip6-mcastprefix
ff02::1	ip6-allnodes
ff02::2	ip6-allrouters
192.168.1.10	master
192.168.1.20	slave1
192.168.1.30	slave2
systemctl stop firewalld
systemctl disable firewalld

2.3 设置三台主机的免密登录

2.3.1 生成免密公钥
[root@master ~]# ssh-keygen -t rsa		#然后一直回车
或者
[root@master ~]# ssh-keygen -f ~/.ssh/id_rsa -P '' #免回车

image-20230321114300354

2.3.2 复制公钥到服务器
ssh-copy-id master
ssh-copy-id slave1
ssh-copy-id slave2

image-20230321115337762

(另外两个节点也是如此操作,这里就不演示了)

2.4 JDK配置

解压文件到相应的位置:

[root@master ~]# tar -zxvf /opt/software/jdk-8u162-linux-x64.tar.gz -C /opt/module/

[root@master ~]# cd /opt/module/	#进入解压目录,可以给解压后的文件改个名字,方便记忆
[root@master module]# mv jdk1.8.0_162/ jdk

设置jdk环境变量:

[root@master module]# vi /etc/profile

在末尾添加如下配置:

#JAVA_HOME
export JAVA_HOME=/opt/module/jdk
export PATH=$PATH:$JAVA_HOME/bin:$JAVA_HOME/jre/bin

刷新环境变量:

[root@master module]# source /etc/profile

配置完后即可查看jdk版本号:

[root@master module]# java -version

image-20230321122027954

分发JDK和环境变量到两个副节点:

[root@master module]# scp /etc/profile root@slave1:/etc/profile
[root@master module]# scp /etc/profile root@slave2:/etc/profile

[root@master module]# scp -rq jdk/ root@slave1:/opt/module/
[root@master module]# scp -rq jdk/ root@slave2:/opt/module/

image-20230321122308314

分发到两个副节点后,刷新环境变量,查看JAVA版本:

slave1节点:

image-20230321122633530

slave2节点:

image-20230321122717175

基础环境搭建完成!!

添加jpsall脚本(可选)

vi $JAVA_HOME/bin/jpsall
chmod +x $JAVA_HOME/bin/jpsall

脚本内容如下:

#!/bin/bash
for hostname in master slave1 slave2
do
  echo ===========$hostname==========
  ssh $hostname ". /etc/profile; jps"
done

2.5 Hadoop环境搭建

前提:已完成3个节点的免密登录,jdk配置

2.5.1 解压包到相应位置:
[root@master module]# tar -zxvf /opt/software/hadoop-3.1.3.tar.gz -C /opt/module/
[root@master module]# mv hadoop-3.1.3/ hadoop	#改一下名字,方便记忆
2.5.2 添加hadoop环境变量
[root@master module]# vi /etc/profile

在末尾添加以下内容:

#HADOOP
export HADOOP_HOME=/opt/module/hadoop
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`
export HDFS_NAMENODE_USER=root
export HDFS_DATANODE_USER=root
export HDFS_SECONDARYNAMENODE_USER=root
export YARN_RESOURCEMANAGER_USER=root
export YARN_NODEMANAGER_USER=root

#备注:3.0后的版本需要指定服务用户

:wq 保存退出后,刷新环境变量:

[root@master module]# source /etc/profile

配置好后,即可直接查看hadoop 版本号

[root@master module]# hadoop version

image-20230321124056646

2.6 修改6个主配置文件

  • 1️⃣ core.site.xml
  • 2️⃣ hdfs-site.xml
  • 3️⃣ mapred-site.xml
  • 4️⃣yarn-site.xml
  • 5️⃣ hadoop-env.sh
  • 6️⃣ workers

配置参考官方文档

目录:\hadoop-3.1.3\share\doc\hadoop

image-20240104222735234

image-20240104222630568

或直接查看官方配置文件:

find ./ -name "core-de*" -o -name "hdfs-de*" -o -name "mapred-de*" -o -name "yarn-de*"

image-20240105152739131

(记住主要参数名即可)

2.6.1先进入配置目录
[root@master module]# cd hadoop/etc/hadoop/
[root@master hadoop]# ll

可以看到如下文件:

image-20230321124310396

我们只用修改其中的6条

2.6.2 hadoop-env.sh配置:
[root@master hadoop]# vi hadoop-env.sh #告诉hadoop jdk在哪里

image-20230321124524896

2.6.3 workers配置

(根据自己的集群来进行配置):

[root@master hadoop]# vi workers
master
slave1
slave2

image-20230321124806539

2.6.4 core.site.xml配置:

image-20240104222915427

[root@master hadoop]# vi core-site.xml
<configuration>
<!-- hdfs的地址名称:schame,ip,port-->
        <property>
                <name>fs.defaultFS</name>
                <value>hdfs://master:9000</value>
        </property>
<!-- hdfs的基础路径,被其他属性所依赖的一个基础路径 -->
        <property>
                <name>hadoop.tmp.dir</name>
                <value>/root/hadoopdir/tmp</value>
        </property>
</configuration>
2.6.5 hdfs.site.xml:
[root@master hadoop]# vi hdfs-site.xml 
<configuration
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值