还在为矢量代数感到烦恼?(点这个吧)

文章目录

  • 向量的线性运算
  • 二、空间直角坐标系
  • 利用坐标进行的线性运算
  • 四、向量的模、方向角、投影
  • 五、数量积、向量积、混合积

一、向量的线性运算

向量的加减法 

(三角形法则)

 加法:两个向量首尾相连,如向量a加向量b,合成的向量由a向量的头指向b向量的尾

减法:两个向量头部相连,如向量c减向量a,合成的向量由a向量的尾指向c向量的头,即指向被减向量

(四边形法则)

向量是长腿会跑的,可以进行平移,平移后就可以转换成三角形法则 来理解

运算规律

交换律:\vec{a}+\vec{b}=\vec{b}+\vec{a}

结合律:(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})

同样,若有n个首尾相连的向量相加,合向量就由第1个向量的头指向第n个向量的尾 

由三角形两边之和大于第三边,有

|\vec{a}+\vec{b}|\leq |\vec{a}|+|\vec{b}||\vec{a}-\vec{b}|\leq |\vec{a}|+|\vec{b}|,其中等号在\vec{a}\vec{b}同向或反向时成立。

向量的数乘 

形式:\lambda \vec{a},规定它是一个向量,它的模为|\lambda \vec{a}|=|\lambda ||\vec{a}|

\lambda > 0时,该向量与\vec{a}的方向相同,当\lambda <0时,该向量与\vec{a}的方向相反

运算规律

结合律:\lambda (\mu \vec{a})=\mu (\lambda \vec{a})=(\lambda \mu)\vec{a}

分配律:(\lambda+\mu)\vec{a}=\lambda \vec{a}+\mu\vec{a}

定理:设向量\vec{a}\neq 0,则向量\vec{b}平行于向量\vec{a}的充分必要条件是存在唯一的实数\lambda,使\vec{b}=\lambda\vec{a}

单位向量

 模长为1的向量,形式为e_{\vec{a}}=\frac{\vec{a}}{|\vec{a}|} 

二、空间直角坐标系

向量 i.j.k分别是x轴、y轴和z轴方向上的单位向量

空间中任意一点M(x,y,z)的位置均可以用这三个单位向量对应表示为M\leftrightarrow \vec{r}=\overrightarrow{OM}=x\vec{i}+y\vec{j}+z\vec{k}\leftrightarrow (x,y,z)

三、 利用坐标进行的线性运算

\vec{a}=(a_{x},a_{y},a_{z})\vec{b}=(b_{x},b_{y},b_{z})\vec{a}=a_{x}\vec{i}+a_{y}\vec{j}+a_{z}\vec{k}\vec{b}=b_{x}\vec{i}+b_{y}\vec{j}+b_{z}\vec{k}

譬如

\vec{a}+\vec{b}=(a_{x}+b_{x})\vec{i}+(a_{y}+b_{y})\vec{j}+(a_{z}+b_{z})\vec{k}=(a_{x}+b_{x},a_{y}+b_{y},a_{z}+b_{z})

\lambda \vec{a}=(\lambda a_{x})\vec{i}+(\lambda a_{y})\vec{j}+(\lambda a_{z})\vec{k}=(\lambda a_{x},\lambda a_{y},\lambda a_{z})

由此可见对向量进行线性运算,只需对向量的各个坐标进行相应的数量运算即可

四、向量的模、方向角、投影

向量的模与两点间距离公式

设向量\vec{r}=(x,y,z),则|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}

设点A(x_{1},y_{1},z_{1})B(x_{2},y_{2},z_{2}),则|AB|=|\overrightarrow{AB}|=\sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}+(z_{1}-z_{2})^{2}}

方向角和方向余弦

非零向量\vec{r}=(x,y,z)与三条坐标轴的夹角\alpha ,\beta ,\gamma称为向量\vec{r}的方向角

(cos\alpha ,cos\beta,cos\gamma )=(\frac{x}{|\vec{r}|},\frac{y}{|\vec{r}|},\frac{z}{|\vec{r}|})=\frac{\vec{r}}{|\vec{r}|}=e_{\vec{r}}

cos\alpha ,cos\beta ,cos\gamma称为向量\vec{r}的方向余弦

一个向量的方向余弦就是同方向的单位向量

向量在轴上的投影 

投影是一个可正可负可为0的数

a_{x}=Prj_{x}\vec{a},a_{y}=Prj_{y}\vec{a},a_{z}=Prj_{z}\vec{a}

空间中一个向量在坐标轴上的投影为这个向量的坐标

性质:

Prj_{u}\vec{a}=|\vec{a}|cos\varphi

Prj_{u}(\vec{a}+\vec{b})=Prj_{u}\vec{a}+Prj_{u}\vec{b}

Prj_{u}(\lambda \vec{a})=\lambda Prj_{u}\vec{a}

五、数量积、向量积、混合积

数量积(向量点乘)

形式: \vec{a}\cdot \vec{b}=|\vec{a}||\vec{b}|\cos \theta

在坐标系中\vec{a}=\left( x_1,y_1,z_1 \right)\vec{b}=\left( x_2,y_2,z_2 \right),则\vec{a}\cdot \vec{b}=x_1x_2+y_1y_2+z_1z_2

\vec{a}\neq 0时有\vec{a}\cdot \vec{b}=|\vec{a}|Prj_{\vec{a}}\vec{b};当\vec{b}\neq 0时有\vec{a}\cdot \vec{b}=|\vec{b}|Prj_{\vec{b}}\vec{a}

也就说两向量的数量积等于其中一个向量的模和另一个向量在这个向量方向上的投影的乘积

(1)\vec{a}\cdot \vec{a}=|\vec{a}|^2

(2)对于两个非零向量\vec{a},\vec{b},有\vec{a}\cdot \vec{b}=0\Longleftrightarrow \vec{a}\bot \vec{b}

运算规律

(1)交换律:\vec{a}\cdot \vec{b}=\vec{b}\cdot \vec{a}

(2)分配律:\left( \vec{a}+\vec{b} \right) \cdot \vec{c}=\vec{a}\cdot \vec{c}+\vec{b}\cdot \vec{c}

(3)\left( \lambda \vec{a} \right) \cdot \vec{b}=\lambda \left( \vec{a}\cdot \vec{b} \right)

向量积(向量叉乘) 

形式:\vec{c}=\vec{a}\times \vec{b},本质上还是一个向量且垂直与\vec{a},\vec{b}所在的平面

右手规则:首先右手四指指向\vec{a}的方向,然后四指握向\vec{b},此时大拇指所指的方向即为\vec{c}的方向

该向量的模长|\vec{c}||\vec{a}||\vec{b}|\sin \theta

模长的几何意义:\vec{a}\vec{b}张角围成平行四边形的面积

(1)\vec{a}\times\vec{a}=\vec{0}

(2)对于两个非零向量\vec{a},\vec{b},有\vec{a}\times \vec{b}=\vec{0}\Leftrightarrow \displaystyle \displaystyle\vec{a}平行于\vec{b}

运算规律

(1)\vec{b}\times \vec{a}=-\vec{a}\times \vec{b},交换律对叉乘不成立

(2)分配律:\left( \vec{a}+\vec{b} \right) \times \vec{c}=\vec{a}\times \vec{c}+\vec{b}\times \vec{c}

(3)\left( \lambda \vec{a} \right) \times \vec{b}=\vec{a}\times \left( \lambda \vec{b} \right) =\lambda \left( \vec{a}\times \vec{b} \right)

\vec{a}\times \vec{b}=\left| \begin{matrix} \vec{i}& \vec{j}& \vec{k}\\ x_1& y_1& z_1\\ x_2& y_2& z_2\\ \end{matrix} \right|=\left( y_1z_2-z_1y_2 \right) \vec{i}+\left( z_1x_2-x_1z_2 \right) \vec{j}+\left( x_1y_2-y_1x_2 \right) \vec{k}

混合积 

形式:\left[ \vec{a}\vec{b}\vec{c} \right] =\left( \vec{a}\times \vec{b} \right) \cdot \vec{c}

下面的内容需要行列式的知识来理解

\vec{a}\times \vec{b}=\left| \begin{matrix} \vec{i}& \vec{j}& \vec{k}\\ x_1& y_1& z_1\\ x_2& y_2& z_2\\ \end{matrix} \right|=\left| \begin{matrix} y_1& z_1\\ y_2& z_2\\ \end{matrix} \right|\vec{i}+\left| \begin{matrix} z_1& x_1\\ z_2& x_2\\ \end{matrix} \right|\vec{j}+\left| \begin{matrix} x_1& y_1\\ x_2& y_2\\ \end{matrix} \right|\vec{k}=\left( \left| \begin{matrix} y_1& z_1\\ y_2& z_2\\ \end{matrix} \right|,\left| \begin{matrix} z_1& x_1\\ z_2& x_2\\ \end{matrix} \right|,\left| \begin{matrix} x_1& y_1\\ x_2& y_2\\ \end{matrix} \right| \right)

\left[ \vec{a}\vec{b}\vec{c} \right] =x_3\left| \begin{matrix} y_1& z_1\\ y_2& z_2\\ \end{matrix} \right|+y_3\left| \begin{matrix} z_1& x_1\\ z_2& x_2\\ \end{matrix} \right|+z_3\left| \begin{matrix} x_1& y_1\\ x_2& y_2\\ \end{matrix} \right|=\left| \begin{matrix} x_3& y_3& z_3\\ x_1& y_1& z_1\\ x_2& y_2& z_2\\ \end{matrix} \right|=\left| \begin{matrix} x_1& y_1& z_1\\ x_2& y_2& z_2\\ x_3& y_3& z_3\\ \end{matrix} \right|

混合积的几何意义:\vec{a},\vec{b},\vec{c}张成的平行六面体的体积


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

狗链锁你喉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值