第六篇GEE中使用数据集求年平均温度

目录

一、主要信息

(一)数据提供者和数据集

(二)可用时间

(三)空间分辨率

(四)所含主要波段

二、数据集的使用

(一)具体代码

(二)结果


一、主要信息

(一)数据提供者和数据集

NASA LP DAAC at the USGS EROS Center、" MODIS/061/MOD11A2"

(二)可用时间

2000021800:00:00–至今

(三)空间分辨率

1000

(四)所含主要波段

如下表

名字

单位

最小值

最大值

描述

LST_Day_1km

K

7500

65535

日地表温度

LST_Night_1km

K

7500

65635

夜间地表温度

二、数据集的使用

(一)具体代码

使用此数据集计算一个区域(roi)的年平均降水(注意:1、这里需要自己定义一个感兴趣区域roi。2、使用此数据集不可超出它的可用时间范围。)

//4.1MODIS/061/MOD11A2
Map.addLayer(roi);
Map.centerObject(roi, 7);

// 选择MODIS温度数据集
var modisLST = ee.ImageCollection("MODIS/061/MOD11A2")
  .filterDate('2000-01-01', '2023-12-31')
  .select('LST_Day_1km');

// 计算每年的平均温度
var yearlyTemperature = ee.List.sequence(2000, 2023).map(function(year) {
  var startDate = ee.Date.fromYMD(year, 1, 1);
  var endDate = ee.Date.fromYMD(year, 12, 31);
  var yearlyMean = modisLST.filterDate(startDate, endDate).mean();
  var celsiusTemp = yearlyMean.multiply(0.02).subtract(273.15); // 转换为摄氏度
  var meanTemp = celsiusTemp.reduceRegion({
    reducer: ee.Reducer.mean(),
    geometry: roi,
    scale: 1000
  });
  return meanTemp.get('LST_Day_1km');
});

// 转换成特征集并绘制柱状图
var chart = ui.Chart.array.values(yearlyTemperature, 0, ee.List.sequence(2000, 2023)).setOptions({
  title: '2000-2023年每年平均温度(摄氏度)',
  vAxis: {title: '温度(℃)'},
  hAxis: {title: '年份'}
});
print(chart);

(二)结果

这里roi以湖南省(如图1)为例,运行结果如图2所示。将鼠标移到散点图上就可以显示年平均降水量。

鼠标左键点击散点图右上角的箭头图标,可以保存为三种格式,分别是csv表格格式、svg和png图片格式,如图3所示。

​(图1)

(图2)

(图3)

### 下载度平均植被NDVI数据集的方法 对于获取度平均植被NDVI数据,可以考虑使用来自不同源的数据集。例如,MOD13A3植被指数数据集提供了自2000起逐月1km分辨率的NDVI数据[^1]。为了获得度平均值,可以在下载所有相关月份的数据之后自行计算。 另一种方法是利用已经处理好的中国月度1KM植被指数(NDVI)空间分布数据集,此数据集基于SPOT/VEGETATION NDVI卫星遥感数据,并通过最大值合成法生成了2001以来的月度植被指数数据集[^2]。如果目标是中国地区的度平均NDVI,则可以直接从这类预处理过的数据集中提取所需信息并进一步加工成度统计数据。 此外,还有专门针对中国的长时间序列省三级逐月归一化植被指数(NDVI)数据可用,涵盖了2000至2023间的信息[^4]。这些数据通常会以Excel表格形式提供给用户,方便快速访问特定城或区域的历史记录。要得到某一份的整体情况,只需选取对应内的每个月份数值取算术平均即可作为该的代表值。 最后值得注意的是MODIS还发布了MCD13Q1产品,它不仅包含了传统的NDVI指标,同时也引入了一种改进版本——增强型植被指数(EVI),后者能够更好地反映密集植被区的状态变化特征[^5]。虽然这个产品的原始频率不是按来发布的,但是可以通过编程手段自动化地收集指定时间段内所有的季度级EVI影像资料再做后续分析工作。 #### Python脚本用于批量下载MODIS MCD13Q1 NDVI/EVI数据并通过Google Earth Engine(GEE)平台进行初步处理: ```python import ee ee.Initialize() def get_annual_ndvi(year, region): start_date = f'{year}-12-31' collection = ( ee.ImageCollection('MODIS/006/MCD13Q1') .filterDate(start_date, end_date) .select(['NDVI', 'EVI']) .mean() # 计算内均值 ) task = ee.batch.Export.image.toDrive( image=collection, description=f'Annual_NDVI_EVI_{region}_{year}', folder='gee_export', scale=250, region=region.geometry(), maxPixels=1e9 ) task.start() print(f'Started export of {year} annual NDVI/EVI data for {region}') # 定义感兴趣的地理边界(这里假设为中国国界) china_boundary = ee.FeatureCollection("users/user_name/china_boundaries") for y in range(2000, 2024): get_annual_ndvi(y, china_boundary) print("All tasks have been submitted.") ``` 上述代码展示了如何借助GEE API实现对中国境内多间每一次的NDVI与EVI图像集合取平均的操作流程;同时支持将结果导出至个人谷歌云端硬盘账户中保存以便离线查看或深入挖掘潜在模式。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gee Explorer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值