1. 测试 Rasa NLU 模型
运行 `rasa test nlu` 命令会测试你的 Rasa NLU 模型。这个命令主要做以下几件事情:
1.1 意图识别测试
检查模型在识别用户意图方面的性能。这包括每个意图的准确率、召回率和 F1 得分。
1.2 实体提取测试
检查模型在识别和提取预定义实体方面的性能。同样会计算准确率、召回率和 F1 得分。
1.3 交叉验证测试
如果没有提供专门的测试数据集,命令将执行交叉验证。交叉验证是一种统计方法,用于评估并比较学习算法的性能,通过将数据集分成训练和测试数据的多个组合来进行。
1.4 结果报告
在执行测试后,你会得到一个报告,通常是在一个新创建的 `results` 文件夹中。这个报告详细说明了模型的性能,并包括意图和实体的混淆矩阵、分类报告和错误预测的例子。
1.5 模型对比
如果你有多个模型或多个配置,并且你想比较它们的性能,这个命令可以帮助你通过在相同数据集上运行它们来评估它们的性能差异。
确保 `data/nlu.yml` 包含了你的 NLU 训练数据,并且 `config.yml` 包含了 NLU 模型的配置信息。这个测试对于理解你的 NLU 模型在实际使用中可能的性能表现至关重要,同时也是迭代改进模型的一个重要部分。
2. 如何使用 spaCy
使用 spaCy 作为 Rasa 的一部分涉及以下几个步骤:
2.1 安装 spaCy
首先,你需要安装 spaCy 以及相应语言模型。可以通过以下命令安装:</