声波导管理论及仿真

本文首先介绍了声波导管的基础理论,并在此基础上利用COMSOL对导管进行模拟,以此验证理论的正确性。


前言

一般声源在无界空间中辐射的常常是波阵面逐步发散的球面波,现在将声的辐射约束在管子中,以此探讨自然管子的形状、尺寸以及管壁材料还有声源的状态对管中声波传播的影响。

在此展现部分仿真结果,后文将对其进行理论分析。

图1 导管的三维声压图和截面高次波

一、矩形声波导管理论分析

设有如图2所示的一矩形管,其宽度为 l y l_{y} ly,高度为 l x l_{x} lx,管长用 z z z坐标表示。已知三维波动方程为:
∂ 2 p ∂ x 2 + ∂ 2 p ∂ y 2 + ∂ 2 p ∂ z 2 = 1 c 0 2 ∂ 2 p ∂ t 2 (1) \frac{\partial^2p}{\partial x^2}+\frac{\partial^2p}{\partial y^2}+\frac{\partial^2p}{\partial z^2}=\frac1{c_0^2}\frac{\partial^2p}{\partial t^2} \tag{1} x22p+y22p+z22p=c021t22p(1)

矩形管

图2 矩阵导管

现令解为:
p = p a ( x , y , z ) e j ω t (2) p=p_\mathrm{a}(x,y,z)\mathrm{e}^{\mathrm{j}\omega t} \tag{2} p=pa(x,y,z)ejωt(2)

代入方程(1)可得:
∂ 2 p a ∂ x 2 + ∂ 2 p a ∂ y 2 + ∂ 2 p a ∂ z 2 + k 2 p a = 0 , (3) \frac{\partial^2p_\mathrm{a}}{\partial x^2}+\frac{\partial^2p_\mathrm{a}}{\partial y^2}+\frac{\partial^2p_\mathrm{a}}{\partial z^2}+k^2p_\mathrm{a}=0, \tag{3} x22pa+y22pa+z22pa+k2pa=0,(3)

式中, k = ω c 0 k=\frac\omega{c_0} k=c0ω,对方程(3)作分离变量,设:
p a ( x , y , z ) = X ( x ) Y ( y ) Z ( z ) (4) p_\mathrm{a}(x,y,z)=X(x)Y(y)Z(z) \tag{4} pa(x,y,z)=X(x)Y(y)Z(z)(4)

于是可以得到三个独立坐标的常微分方程:
∂ 2 X ( x ) ∂ x 2 + k x 2 X ( x ) = 0 , ∂ 2 Y ( y ) ∂ y 2 + k y 2 Y ( y ) = 0 , ∂ 2 Z ( z ) ∂ z 2 + k z 2 Z ( z ) = 0 , (5) \begin{gathered} \frac{\partial^2X(x)}{\partial x^2}+k_x^2X(x)=0, \\ \frac{\partial^2Y(y)}{\partial y^2}+k_y^2Y(y)=0, \\ \frac{\partial^2Z(z)}{\partial z^2}+k_z^2Z(z)=0, \end{gathered} \tag{5} x22X(x)+kx2X(x)=0,y22Y(y)+ky2Y(y)=0,z22Z(z)+kz2Z(z)=0,(5)

其中 k x k_{x} kx k y k_{y} ky k z k_{z} kz为三个待定常数,它们之间满足以下关系:
k 2 = k x 2 + k y 2 + k z 2 (6) k^2=k_x^2+k_y^2+k_z^2 \tag{6} k2=kx2+ky2+kz2(6)

考虑到管子的 x x x y y y 方向有界,将存在驻波,因为方程(5)中第一和第二方程的解为以下形式:
X ( x ) = A x cos ⁡ k x x + B x sin ⁡ k x x ( 7 a ) Y ( y ) = A y cos ⁡ k y y + B y sin ⁡ k y y ( 7 b ) \begin{aligned}X(x)=&A_x\cos k_xx+B_x\sin k_xx&(7a)\\Y(y)=&A_y\cos k_yy+B_y\sin k_yy&(7b)\end{aligned} X(x)=Y(y)=Axcoskxx+BxsinkxxAycoskyy+Bysinkyy(7a)(7b)

第三方程考虑到 z z z方向无限,没有反射波,因而取行波解为:
Z ( z ) = A z e − j k z z ( 7 c ) \begin{aligned}Z(z)=A_z\mathrm{e}^{-\mathrm{j}k_zz}&(7c)\end{aligned} Z(z)=Azejkzz(7c)

从(7a)与(7b)式可求得 x x x y y y方向上的质点速度为:
v x = − 1 j ρ 0 ω ∂ p ∂ x = − 1 j ρ 0 ω Y ( y ) Z ( z ) [ ∂ X ( x ) ∂ x ] e j ω t = j k x ρ 0 ω Y ( y ) Z ( z ) ( − A x sin ⁡ k x x + B x cos ⁡ k x x ) e j ω t v y = j k y ρ 0 ω X ( x ) Z ( z ) ( − A y sin ⁡ k y y + B y cos ⁡ k y y ) e j ω t (8) \begin{aligned} v_{x}=& \frac{-1}{\mathrm{j}\rho_0\omega}\frac{\partial p}{\partial x}=\frac{-1}{\mathrm{j}\rho_0\omega}Y(y)Z(z)\biggl[\frac{\partial X(x)}{\partial x}\biggr]\mathrm{e}^{\mathrm{j}\omega t} \\ \text{=}& \frac{\mathrm{j}k_x}{\rho_0\omega}Y(y)Z(z)(-A_x\sin k_xx+B_x\cos k_xx)\mathrm{e}^{\mathrm{j}\omega t} \\ v_{y}=& \frac{\mathrm{j}k_y}{\rho_0\omega}X(x)Z(z)(-A_y\sin k_yy+B_y\cos k_yy)\mathrm{e}^{\mathrm{j}\omega t} \\ \end{aligned} \tag{8} vx==vy=jρ0ω1xp=jρ0ω1Y(y)Z(z)[xX(x)]ejωtρ0ωjkxY(y)Z(z)(Axsinkxx+Bxcoskxx)ejωtρ0ωjkyX(x)Z(z)(Aysinkyy+Bycoskyy)ejωt(8)

根据刚性管壁边界条件:
( v x ) ( x = 0 , l x ) = 0 ( v y ) ( y = 0 , l y ) = 0 (v_{x})_{(x=0,l_{x})}=0\\(v_{y})_{(y=0,l_{y})}=0 (vx)(x=0,lx)=0(vy)(y=0,ly)=0

可得:
B x = 0 , k x l x = n x π ( n x = 0 , 1 , 2 , ⋯   ) B y = 0 , k y l y = n y π ( n y = 0 , 1 , 2 , ⋯   ) (9) B_{x}=0,k_{x}l_{x}=n_{x}\pi\quad(n_{x}=0,1,2,\cdots)\\B_{y}=0,k_{y}l_{y}=n_{y}\pi\quad(n_{y}=0,1,2,\cdots) \tag{9} Bx=0,kxlx=nxπ(nx=0,1,2,)By=0,kyly=nyπ(ny=0,1,2,)(9)

于是方程(2)可以转变为:
p n x n y = A n x n y cos ⁡ k x x cos ⁡ k y y e j ( ω t − k z z ) (10) p_{n_xn_y}=A_{n_xn_y}\cos k_xx\cos k_yye^{j(\omega t-k_zz)} \tag{10} pnxny=Anxnycoskxxcoskyyej(ωtkzz)(10)

这里 p n x n y p_{n_xn_y} pnxny 为每一组( n x n_{x} nx n y n_{y} ny)数值对应的一个特解,它表示了在声波导管中可能存在的沿 z z z 方向传播的一种声波。这种声波的圆频率为 ω \omega ω ,传播速度为 c z = ω k z c_z=\frac\omega{k_z} cz=kzω ,振幅由 A n x n y cos ⁡ k x x cos ⁡ k y y A_{n_xn_y}\cos k_xx\cos k_yy Anxnycoskxxcoskyy 决定。将方程(6)和方程(9)联立,可以得到:
k z = [ k 2 − ( k x 2 + k y 2 ) ] 1 2 = ( ω 2 c 0 2 − β n x n y 2 ) 1 2 (11) k_z=\begin{bmatrix}k^2-(k_x^2+k_y^2)\end{bmatrix}^{\frac12}=\left(\frac{\omega^2}{c_0^2}-\beta_{n_xn_y}^2\right)^{\frac12} \tag{11} kz=[k2(kx2+ky2)]21=(c02ω2βnxny2)21(11)

而:
β n x n y 2 = [ ( n x l x ) 2 + ( n y l y ) 2 ] π 2 (12) \beta_{n_xn_y}^2=\left[\left(\frac{n_x}{l_x}\right)^2+\left(\frac{n_y}{l_y}\right)^2\right]\pi^2 \tag{12} βnxny2=[(lxnx)2+(lyny)2]π2(12)

我们可知仅当 k z k_{z} kz 为实数时,在 z z z 方向才表现有波的传播。而从方程(11)可以看到,这一 k z k_{z} kz并不在任何条件下都为实数,因此欲在 z z z 方向传播声波就必须满足如下条件:
ω 2 c 0 2 > β n x n y 2 = [ ( n x l x ) 2 + ( n y l y ) 2 ] π 2 (13) \frac{\omega^{2}}{c_{0}^{2}}>\beta_{{n_{x}n_{y}}}^{2}=\left[\left(\frac{n_{x}}{l_{x}}\right)^{2}+\left(\frac{n_{y}}{l_{y}}\right)^{2}\right]\pi^{2} \tag{13} c02ω2>βnxny2=[(lxnx)2+(lyny)2]π2(13)

综上,当 ω 2 c 0 2 < β n x n y 2 \frac{\omega^2}{c_0^2}<\beta_{n_{x^ny}}^2 c02ω2<βnxny2,那么方程(11)应化为 k z = − j α n x n y k_{z}=-\mathrm{j}\alpha_{n_{x^{n}y}} kz=jαnxny ,其中 α n x n y = β n x n y 2 − ω 2 c 0 2 \alpha_{n_xn_y}=\sqrt{\beta_{n_xn_y}^2-\frac{\omega^2}{c_0^2}} αnxny=βnxny2c02ω2 为正的实数,于是方程(10)就变为:
p n x n y = A n x n y cos ⁡ n x π l x x cos ⁡ n y π l y y e − a n x n y z e j ω t (14) p_{n_{x}n_{y}}=A_{n_{x}n_{y}}\cos \frac{n_{x}\pi}{l_{x}}x\cos \frac{n_{y}\pi}{l_{y}}y \mathrm{e}^{-a_{n_{x}n_{y}}z} \mathrm{e}^{j\omega t} \tag{14} pnxny=Anxnycoslxnxπxcoslynyπyeanxnyzet(14)

此式表明,沿 z z z 轴传播的声波在做衰减得到整体振动。

由此,我们把管中产生沿 z z z 方向传播声波的条件归结为:
f > f n x n y (15) f>f_{n_xn_y} \tag{15} f>fnxny(15)

这里
f n x n y = c 0 2 ( n x l x ) 2 + ( n y l y ) 2 (16) f_{n_xn_y}=\frac{c_0}2\sqrt{\left(\frac{n_x}{l_x}\right)^2+\left(\frac{n_y}{l_y}\right)^2} \tag{16} fnxny=2c0(lxnx)2+(lyny)2 (16)

称为声波导管的简正频率。

分析公式(10)可知,对于不同的一组( n x n_{x} nx n y n_{y} ny)数值将得到不同的波。我们称对应于( n x n_{x} nx n y n_{y} ny)的波为( n x n_{x} nx n y n_{y} ny)次的简正波。并称(0,0)次波为主波,除(0,0)次以外的波称高次波。从上面分析可知,只有当声源的激发频率 f f f 比管中某个简正频率 f n x n y f_{n_xn_y} fnxny 高时,才能在管中激发出对应的( n x n_{x} nx n y n_{y} ny)次波。若声源的频率低于管中除零以外的最低一个简正频率,那么管中所有的高次波都不能出现。因为(0,0)次简正频率为0,所以只要有声波存在,任何频率都总是大于零,因此这是管中只可能传播唯一的(0,0)次波。为之我们称除零以外的一个最低简正频率为声波导管的截止频率。

二、COMSOL仿真分析

2.1、几何模型构建

建模模型如图3所示,结合前文的理论分析我们可以得到对应的边长值 l x = 0.08 m l_{x}=0.08m lx=0.08m l y = 0.14 m l_{y}=0.14m ly=0.14m。左侧平面的九个点为点源,它们将发射方向为(1,1,1),声强为 1 W 1W 1W 的声波。最右侧为完美匹配层,用于模拟无限延长的 z z z ,主要作用是吸收入射波,避免反射波。
在这里插入图片描述

图3 矩阵导管建模

2.2、压力声学频域求解

将声源的频率分别设为 1 k H z 1kHz 1kHz 2 k H z 2kHz 2kHz 3 k H z 3kHz 3kHz,得到的声压结果如下。

在这里插入图片描述

图4 1kHz声压场

在这里插入图片描述

图5 2kHz声压场

在这里插入图片描述

图6 3kHz声压场

从图4-6中可以看出,不同频率的声源在导管中传播的声压场不同,这是由于在低频时无法通过高次波,只能通过主波。随着频率的升高,通过的高次波不断增加,导致了声压场在管中呈现出不同的结果。

2.3、高次波分析

通过式(16)
f n x n y = c 0 2 ( n x l x ) 2 + ( n y l y ) 2 (16) f_{n_xn_y}=\frac{c_0}2\sqrt{\left(\frac{n_x}{l_x}\right)^2+\left(\frac{n_y}{l_y}\right)^2} \tag{16} fnxny=2c0(lxnx)2+(lyny)2 (16)

我们可以得到不同波次的( n x n_{x} nx n y n_{y} ny)的数值如下:
{ n x = 0 , n y = 0 ; f = 0 n x = 1 , n y = 0 ; f = 2143.75 n x = 0 , n y = 1 ; f = 1225 n x = 1 , n y = 1 ; f = 2469.06 n x = 2 , n y = 0 ; f = 4287.5 n x = 0 , n y = 2 ; f = 2450 \begin{cases} n_x=0, n_y=0; f=0\\ n_x=1,n_y=0; f=2143.75\\ n_x=0,n_y=1; f=1225\\ n_x=1,n_y=1; f=2469.06\\ n_x=2,n_y=0; f=4287.5\\ n_x=0,n_y=2; f=2450\\ \end{cases} nx=0,ny=0;f=0nx=1,ny=0;f=2143.75nx=0,ny=1;f=1225nx=1,ny=1;f=2469.06nx=2,ny=0;f=4287.5nx=0,ny=2;f=2450

从中可以得到,频率为 1 k H z 1kHz 1kHz 时只能通过主波,频率为 2 k H z 2kHz 2kHz 时能通过主波和(0,1)的高次波,频率为 3 k H z 3kHz 3kHz 时能通过主波和4种高次波。

在COMSOL中,我们截取横截面,通过分析横截面的波形态,来确定是否有高次波通过。

当声源频率为 1 k H z 1kHz 1kHz 时,通过如图7所示的波形。
在这里插入图片描述

图7 1kHz横截面声压

图7的声压场在 x x x y y y 轴上无任何方向波动,说明该通过的波是主波。

当声源频率为 2 k H z 2kHz 2kHz 时,通过如图8所示的波形。

图8 2kHz横截面声压

从图8中可以看出,横截面通过两种波形,分别为主波和(0,1)的高次波。

当声源频率为 3 k H z 3kHz 3kHz 时,除主波外,还能通过如图9-10所示的四种高次波。

图9 3kHz横截面声压
图10 3kHz横截面声压

从左上角到右下角依次为(1,1),(0,2),(1,0),(0,1)的高次波。同理论计算结果一致。


总结

当声源的频率大于特定波次的简正频率时,该简正频率产生的波会沿轴向不衰减传播,并呈现出周期性变化。相反,若声源的频率小于特定波次的简正频率时,该简正频率产生波的声压将会呈现指数衰减的特点。当声源的频率大于多个简正频率时,多种波形将在传播的过程中叠加,呈现出不同的声压结果。

  • 18
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值