Rapidly-exploring Random Tree (RRT) 是一种经典的路径规划算法,它在解决高维空间中的路径规划问题中表现出高效性和鲁棒性。RRT算法主要适用于非光滑、动态环境以及复杂约束的路径规划场景,如机器人导航、飞行器控制等。
-
算法概述: RRT算法的核心思想是构建一棵随机树,从初始节点出发,通过不断随机选择新的扩展节点并连接到已有的树结构上,逐步探索可能的路径。这个过程既包括从现有节点向未探索区域生长,也包括沿着当前路径的回溯尝试。
-
基本步骤: a. 初始化:开始时,创建一个初始节点,并将其作为树的根节点。 b. 随机选择:生成一个目标区域内的随机位置作为扩展节点候选。 c. 树扩展:计算从当前节点到扩展节点的直接路径,如果新节点不在树中或路径更优,则将其添加到树中,并更新连接。 d. 回溯:沿着最近的路径从扩展节点向树的根节点搜索,如果找到一个更短的路径,就更新该路径。 e. 重复:重复上述步骤,直到达到预设的停止条件(如达到目标节点或达到最大迭代次数)。
-
优点: a. 高效:对于高维空间,RRT比其他方法如A*更快地找到可行路径。 b. 适应性强:能够处理复杂的约束和障碍物环境。 c. 局部最优:虽然不是全局最优,但在实际应用中通常能找到满意解。