小菜学python——第一天 python语言的基本要素

本文介绍了Python编程的基础知识,包括使用#进行注释,常量如整数、小数和字符串,以及变量的命名规则。接着讲解了字符串和列表的概念,如何在列表中添加、插入和删除元素,以及列表的排序和获取长度的方法。此外,还涵盖了算术、关系和逻辑运算符的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.注释

python中的注释以“#”开头,从“#”开始到行末都是注释

2.常量

常量表示固定不变的数据,python中的常量有整数,小数,字符串,True,False等

3.变量

变量用来存储数据,有名字,其值可变,每个变量都指向一个值(与该变量相关联的信息),python将始终记录变量的最新值。

**变量命名规则**

(1)变量名只能包含字母,数字和下划线而且不能用数字打头

(2)变量名不能包含空格,但能使用下划线来分隔单词

(3)不能将python关键字和函数名作变量名,即不要使用python保留用于特殊用途的单词

4.字符串

字符串就是一系列字符,在python中用单引号,双引号或者三引号括起来的都是字符串

5.列表

列表由一系列按特定顺序排列的元素组成,元素的类型可以不同。在python中用“[ ]”表示列表并用逗号分隔其中的元素

***在列表中添加元素***

#示例1:
a=['happy','happiness']

#示例2:
a=[]

a.append('happy')
a.append('happiness')

***在列表中插入元素***

a=['happy','happiness']
a.insert(0,'sad')#0表示插入第一个位置

***从列表中删除元素***

#示例1:
​
#示例1:
a=['sad','happy','happiness']
del a[0]


#示例2:用pop()方法删除列表末尾的元素
a=['sad','happy','happiness']
popped_a=a.pop()

​​

#示例3:
a=['sad','happy','happiness']
b='sad'
a.remove(b)

实际上可以使用pop()来删除列表中任意位置的元素,只需要在圆括号中指定要删除元素的索引即可

方法remove()只删除第一个指定的值,如果要删除的值可能在列表中出现多次,就需要用循环来确保每个值都被删除了

***使用方法sort()对列表永久排序***

a=['sad','happy','happiness']
#输出结果按字母表顺序排列
a.sort()

#输出按与字母相反的顺序排列
a.sort(reverse=True)




***确定列表的长度***

a=['happy','happiness']
len(a)

6.基本运算

(1)算数运算

 运算符                                              功能                                                    
+加法
-减法
*乘法
/除法 (结果一定是小数,能整除也是小数)
//除法(参与运算的都是整数则结果为整数,有一个是小数结果就是小数)
%取模(求余数,操作数可以是小数)
**求幂

(2)关系运算

运算符          含义
==是否相等
!=是否不等
>是否大于
<是否小于
<=小于等于
>=    大于等于

(3)逻辑运算

and与运算,形式为exp1 and exp2
or或运算,形式为exp1 or exp2
not非运算,形式为 not exp

(4)运算符的优先级

各类运算符的优先级,从高到低依次为:

算术运算符:-(取相反数) **  *   /  //  %  +-(减法)

关系运算符:< >  ==  !=  <=  >=

逻辑运算符:not  and  or 

赋值运算符:=

内容概要:本文档详细介绍了在三台CentOS 7服务器(IP地址分别为192.168.0.157、192.168.0.158和192.168.0.159)上安装和配置Hadoop、Flink及其他大数据组件(如Hive、MySQL、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala)的具体步骤。首先,文档说明了环境准备,包括配置主机名映射、SSH免密登录、JDK安装等。接着,详细描述了Hadoop集群的安装配置,包括SSH免密登录、JDK配置、Hadoop环境变量设置、HDFS和YARN配置文件修改、集群启动与测试。随后,依次介绍了MySQL、Hive、Sqoop、Kafka、Zookeeper、HBase、Spark、Scala和Flink的安装配置过程,包括解压、环境变量配置、配置文件修改、服务启动等关键步骤。最后,文档提供了每个组件的基本测试方法,确保安装成功。 适合人群:具备一定Linux基础和大数据组件基础知识的运维人员、大数据开发工程师以及系统管理员。 使用场景及目标:①为大数据平台搭建提供详细的安装指南,确保各组件能够顺利安装和配置;②帮助技术人员快速掌握Hadoop、Flink等大数据组件的安装与配置,提升工作效率;③适用于企业级大数据平台的搭建与维护,确保集群稳定运行。 其他说明:本文档不仅提供了详细的安装步骤,还涵盖了常见的配置项解释和故障排查建议。建议读者在安装过程中仔细阅读每一步骤,并根据实际情况调整配置参数。此外,文档中的命令和配置文件路径均为示例,实际操作时需根据具体环境进行适当修改。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值