神经网络与深度学习 学习卷积神经网络内容

 卷积神经网络

     卷积神经网络(convolutional neural network,CNN)是一类强大的、为处理图像数据而设计的神经网络。现代卷积神经网络的设计得益于生物学、群论和一系列的补充实验。卷积神经网络需要的参数少于全连接架构的网络,而且卷积也很容易用GPU并行计算。因此卷积神经网络除了能够高效地采样从而获得精确的模型,还能够高效地计算。久而久之,从业人员越来越多地使用卷积神经网络。

卷积神经网络特点

卷积神经网络在图像处理上有以下特点:

1. 平移不变性(translation invariance):不管检测对象出现在图像中的哪个位置,神经网络的前面几层 应该对相同的图像区域具有相似的反应,即为“平移不变性”。

2. 局部性(locality):神经网络的前面几层应该只探索输入图像中的局部区域,而不过度在意图像中相隔 较远区域的关系,这就是“局部性”原则。最终,可以聚合这些局部特征,以在整个图像级别进行预测。

图像卷积

在二维互相关运算中,卷积窗口从输入张量的左上角开始,从左到右、从上到下滑动。当卷积窗口滑动到新一个位置时,包含在该窗口中的部分张量与卷积核张量进行按元素相乘,得到的张量再求和得到一个单一的标量值,由此我们得出了这一位置的输出张量值。在如上例子中,输出张量的四个元素由二维互相关运算得到,这个输出高度为2、宽度为2。

填充与步幅

在应用多层卷积时,我们常常丢失边缘像素。由于我们通常使用小卷积核,因此对于任何单个卷 积,我们可能只会丢失几个像素。但随着我们应用许多连续卷积层,累积丢失的像素数就多了。解决这个问 题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是0)。例如, 我们将3 × 3输入填充到5 × 5,那么它的输出就增加为4 × 4。

我们将每次滑动元素的数量称为步幅(stride)。到目前为止,我们只使用过高度或宽度为1的步幅,那么如何 使用较大的步幅呢?图6.3.2是垂直步幅为3,水平步幅为2的二维互相关运算。

代码实现与结果

代码分为三段,第一段是卷积,填充与步幅的实现;第二部分是多段输入与多端输出的实现;第三段是LeNet的实现。
import torch
from torch import nn
from d2l import torch as d2l

class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.weight = nn.Parameter(torch.rand(kernel_size))
        self.bias = nn.Parameter(torch.zeros(1))

    def forward(self, x):
        return corr2d(x, self.weight) + self.bias

def corr2d(X, K):
    """接受输入张量X和卷积核张量K,并返回张量Y"""
    h, w = K.shape
    Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i:i + h, j:j + w] * K).sum()
    return Y

if __name__ == '__main__':
    #X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
    #K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
    #corr2d(X, K)
    X = torch.ones((6, 8))
    #每一行的第3-6都是0
    X[:, 2:6] = 0
    K = torch.tensor([[1.0, -1.0]])
    Y = corr2d(X, K)
    #构造二维卷积层,具有1个输入通道,1个输出通道和形状为(1,2)的卷积核,不设偏置
    conv2D = nn.Conv2d(1, 1, kernel_size=(1, 2), bias=False)
    #二维卷积层使用四维输入和输出(批量大小、通道、高度、宽度)
    X = X.reshape(1, 1, 6, 8)
    Y = Y.reshape(1, 1, 6, 7)
    lr = 3e-2

    for i in range(10):
        Y_hat = conv2D(X)
        #计算Y跟卷积层输出的误差
        l = (Y_hat - Y) ** 2
        conv2D.zero_grad()
        l.sum().backward()
        #迭代卷积核
        conv2D.weight.data[:] -= lr * conv2D.weight.grad
        if(i + 1) % 2 == 0:
            print(f'epoch{i + 1}, loss {l.sum():.3f}')
    #输出形状为n-k+p+1,n是输入形状,k为卷积核形状,p为填充 下面的卷积核为3,左右填充各1,相当于p=2,维持输出输入形状相同
    conv2D1 = nn.Conv2d(1, 1, kernel_size=3, padding=1)
    #stride为步幅,为s,高度与宽度变为(n-k+p+1)/s
    conv2D2 = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)

import torch
from d2l import torch as d2l

def corr2d_multi_in(X, K):
#遍历X和K的第0个维度通道维度,然后相加
return sum(d2l.corr2d(x, k) for (x, k) in zip(X, K))

def corr2d_multi_in_out(X, K):
#迭代K的第0个维度通道维度,然后对输出X执行互相关运算,然后相加结果
return torch.stack([corr2d_multi_in(X, k) for k in K], 0)

if __name__ == '__main__':
X = torch.tensor([[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]])
K = torch.tensor([[[0.0, 1.0], [2.0, 3.0]],
[[1.0, 2.0], [3.0, 4.0]]])
corr2d_multi_in(X, K)
"""torch.stack方法用于沿着一个新的维度 join(也可称为cat)一系列的张量(可以是2个张量或者是更多),它会插入一个新的维度,并让张量按照这个新的维度进行张量的cat操作。"""
K = torch.stack((K, K + 1, K + 2), 0)
print(f'{corr2d_multi_in_out(X, K)}'

import torch
from torch import nn
from d2l import torch as d2l

def evaluate_accuracy_gpu(net, data_iter, device=None):
    """使用GPU计算模型在数据集上的精度"""
    if isinstance(net, nn.Module):
        net.eval()  # 设置为评估模式
        if not device:
            device = next(iter(net.parameters())).device
    # 正确预测的数量,总预测的数量
    metric = d2l.Accumulator(2)
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(X, list):
                # BERT微调所需的(之后将介绍)
                X = [x.to(device) for x in X]
            else:
                X = X.to(device)
            y = y.to(device)
            metric.add(d2l.accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]

def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
    """用GPU训练模型"""
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print('training on', device)
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=['train loss', 'train acc', 'test acc'])
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(num_epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (train_l, train_acc, None))
        test_acc = evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, '
          f'test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec '
          f'on {str(device)}')

if __name__ == '__main__':
    net = nn.Sequential(
        nn.Conv2d(1,  6, kernel_size=5, padding=2), nn.Sigmoid(),
        nn.AvgPool2d(kernel_size=2, stride=2), #2x2平均汇聚层, 步幅2
        nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
        nn.AvgPool2d(kernel_size=2, stride=2),
        nn.Flatten(),
        nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
        nn.Linear(120, 84), nn.Sigmoid(),
        nn.Linear(84, 10)
    )
    X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
    for layer in net:
        X = layer(X)

    batch_size = 256
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
    lr, num_epochs = 0.9, 10
    train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

  • 37
    点赞
  • 47
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值