评估聚类效果

本关任务

本关实现准确度评估函数,来评估聚类算法的效果。

相关知识

在前三个关卡中,我们学习了 K-measn 聚类算法中,三个比较关键的组成部分,包括欧几里得距离计算公式、找出每个样本的最近邻簇中心和重新计算每个簇的聚类中心。本关卡中,我们将学习评估聚类算法优劣的方法。

通常对于一个具有 K 个簇的数据集 {(x,y)},x 是单个样本,y (1<=y<=K)是其所在的簇标识。我们的聚类算法会针对每个样本 x 输出一个他所在的簇,记为y'(1<=y'<=K)。为了评估聚类算法的效果,我们需要比较算法得出的 y'和实际数据集中的簇 y 的差异。

一种比较常见的评估聚类算法好坏的指标就是精度,定义为:

Accu\fracy(yˉ​,y)=i∑n​I(yˉ​i​=yi​)/N

其中 N 是数据集中的样本个数,公式:

I(yˉ​i​=yi​)

代表比较函数,若两者相等则输出 1,否则输出 0。

编程要求

本关卡要求你实现函数 acc,在右侧编辑器 Begin-End 区间补充代码,需要填充的代码块如下:

 
  1. # -*- coding: utf-8 -*-
  2. def acc(x1, x2):
  3. """计算精度
  4. 参数:
  5. x1 - numpy数组
  6. x2 - numpy数组
  7. 返回值:
  8. value - 浮点数,精度
  9. """
  10. value = 0
  11. # 请在此添加实现代码 #
  12. #********** Begin *********#
  13. #********** End ***********#
  14. return value
测试说明

平台将对你的函数输入两个整数向量,比对函数 acc 的输出结果与正确结果的差异,只有完全正确才能通关。

代码:

# -*- coding: utf-8 -*-
def acc(x1, x2):
    """计算精度
    参数:
        x1 - numpy数组
        x2 - numpy数组
    返回值:
        value - 浮点数,精度
    """
    value = 0
    #   请在此添加实现代码     #
    #********** Begin *********#
    import numpy as np
    value = float(np.sum(x1==x2))/len(x1)
    #********** End ***********#
    return value

参考资源链接:[Matlab实现Kmeans++聚类算法及数据集应用](https://wenku.csdn.net/doc/5sjcfm2u21?utm_source=wenku_answer2doc_content) 为了深入理解和正确实现Kmeans++聚类算法,并使用Davis-Bouldin指数评估聚类效果,建议参阅《Matlab实现Kmeans++聚类算法及数据集应用》这一资源。它将为你提供从理论到实践的全面指导,帮助你快速掌握Kmeans++算法的实现方法,并理解如何用Davis-Bouldin指数进行聚类质量的评估。 首先,Kmeans++算法的主要思想是在选择新的质心时考虑已有点到已有质心集合的距离,从而提高初始化的效率和聚类的稳定性。下面是一个简化的代码实现示例: 1. 初始化质心(init_centroids.m): ```matlab function centroids = init_centroids(data, k) centroids = zeros(k, size(data, 2)); centroids(1, :) = data(randi(numel(data)), :); for i = 2:k dists = min(pairwise_distance(centroids(1:i-1, :), data), [], 1); probs = dists / sum(dists); cumprobs = cumsum(probs); r = rand; for j = 1:length(cumprobs) if r <= cumprobs(j) centroids(i, :) = data(j, :); break; end end end end ``` 2. 质心更新与标签分配(update_centroids.m & assign_labels.m): ```matlab function [centroids, labels] = update_centroids(data, labels, k) centroids = zeros(k, size(data, 2)); for i = 1:k centroids(i, :) = mean(data(labels == i, :), 1); end end function labels = assign_labels(data, centroids) k = size(centroids, 1); labels = zeros(size(data, 1), 1); for i = 1:k dists = pairwise_distance(data, centroids(i, :)); [~, idx] = sort(dists, 1); labels(idx(1)) = i; end end ``` 3. 计算Davis-Bouldin指数(davis_bouldin_index.m): ```matlab function idx = davis_bouldin_index(data, labels, k) centroids = unique(data(labels, :), 'rows'); intra_dists = zeros(size(centroids, 1), 1); for i = 1:k distances = pairwise_distance(data(labels == i, :), centroids(i, :)); intra_dists(i) = mean(distances.^2); end centroidDistances = pairwise_distance(centroids); idx = mean(max(intra_dists ./ centroidDistances, [], 1)); end ``` 在进行聚类分析时,你需要首先加载数据集,并根据你的数据集特点,初始化质心、进行质心迭代更新、标签分配,最终使用Davis-Bouldin指数来评估聚类效果。以下是算法的执行步骤: - 加载数据集。 - 初始化质心。 - 进行迭代更新,直到满足收敛条件(质心不再变化或达到预设迭代次数)。 - 使用assign_labels.m函数为每个数据点分配标签。 - 计算Davis-Bouldin指数,评估聚类质量。 通过这种方式,你可以利用Matlab实现Kmeans++聚类算法,并对结果进行有效的质量评估。 参考资源链接:[Matlab实现Kmeans++聚类算法及数据集应用](https://wenku.csdn.net/doc/5sjcfm2u21?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值