数据的预处理

1、探索性数据分析

         EDA(Exploratory Data Analysis)是探索性数据分析的缩写,是数据科学中的一项重要任务。它的目标是通过可视化和统计方法,对数据集进行初步的了解和描述。通过EDA,我们可以发现数据的特征、确定数据的质量、检测异常值、寻找数据之间的关系等。

EDA通常包括以下几个步骤:

  1. 数据收集和理解:了解数据集的背景、含义以及各个特征的定义。
  2. 数据清洗:处理缺失值、异常值和重复值,将数据转化为可分析的形式。
  3. 数据可视化:使用图表、统计图等方法对数据进行可视化分析,包括探索特征分布、相关性等。
  4. 特征工程:根据数据分析的结果,对原始数据进行变换、组合和选择,以提取更有用的特征。
  5. 探索性统计分析:运用统计方法对数据集进行描述、推断和模型选择。
  6. 结果解释和汇报:通过可视化和文字描述,将数据分析的结果传达给相关的利益相关者。

        通过EDA,我们可以更好地理解数据,为后续的建模和分析提供基础,发现数据中的规律和趋势,并做出合理的解释和预测。

2、数据清理

数据错误类型:

        1、离群值:偏离列中值分布的数据值;

        2、违反规则:违反完整性约束,如“不空”和“必须唯一”;

        3、违反模式:违反语法和语义约束,如对齐、格式、拼写错误。

一、离群值检测:

二、基于规则的检测

三、基于模式的检测

3、数据变换(数据变形)

        数据变换是数据预处理过程中的一个重要步骤,它旨在将原始数据经过某种操作转化为适合进一步分析和建模的形式。数据变换可以帮助我们解决数据质量问题、处理异常值、改变数据的分布和规模等。

常见的数据变换方法包括:

        1. 标准化(Normalization):将数据按比例缩放,使其落入一定的范围。常用的标准化方法有Z-score标准化和MinMax标准化,可以将数据转化为均值为0、标准差为1的分布或区间为[0,1]的分布。

        2. 对数变换(Log Transformation):对数据取对数,可以用于降低数据的偏斜性、压缩数据的范围,常用于处理右偏或左偏分布的数据。

        3. 偏差修正(Bias Correction):当数据存在偏差时,可以采取一些方法修正数据。例如,使用Box-Cox变换可以通过选择最佳的指数参数来调整数据的分布。

        4. 离散化(Discretization):将连续型数据转化为离散型数据。离散化可以帮助处理数据的噪声和异常值,并提高模型的稳定性和解释性。

        5. 主成分分析(Principal Component Analysis,PCA):通过线性变换将原始特征转化为一组线性无关的主成分,用于降维和提取出最具代表性的特征。

        这些数据变换方法都是根据数据的特性和分布选择的,具体使用哪种方法要根据数据的具体情况和分析目标来决定。数据变换可以帮助我们更好地理解和分析数据,提高建模和预测的准确性和可解释性。

总结:

       1、数据转换将数据传输到ML算法喜欢的格式,并平衡数据大小、质量和加载速度;

       2、表格:标准化真实价值特征;

       3、图片:裁剪、取样、美白;视频:剪辑、取样帧;

       4 、文本:词干分析、词法化、符号化。

4、特征工程

        特征工程是机器学习和数据分析中的关键步骤,它涉及将原始数据转化为更有信息量的特征,以提高模型的性能和预测能力。通过特征工程,我们可以挖掘数据中的隐藏模式和关联性,选择最有意义的特征,并进行适当的变换和组合,从而更好地表示数据的特性。

特征工程的主要目标是:
        1. 提取有用的特征:根据对数据的理解和领域知识,选择与目标变量相关且具有预测能力的特征。这可能包括原始数据中的数值、类别、文本、时间序列等各种类型的特征。

        2. 清洗和处理特征:处理缺失值、异常值和重复值,对特征进行归一化、标准化、离散化等处理,以消除噪声和提高数据质量。

        3. 特征变换和组合:对特征进行数学变换(如对数、平方、开方等)或添加新的特征,以改变特征的分布、增加非线性关系,并捕捉更多的信息。例如,多项式特征、交互特征、统计特征等都可以用于增加特征的表达能力。

        4. 降维:对高维数据进行降维,减少冗余特征并提高计算效率。常用的降维方法有主成分分析(PCA)、线性判别分析(LDA)等。

        5. 特征选择:根据特征的相关性、重要性、稳定性等指标,选择对模型性能最有贡献的特征。这可以帮助减少模型的复杂度、降低过拟合风险,并提高模型的可解释性。

        特征工程往往需要结合实际问题和领域知识来进行,它是一个迭代的过程,需要不断尝试和验证。优秀的特征工程能够提供更好的特征表示,提高模型的准确性、稳定性和可解释性,对于机器学习和数据分析任务的成功非常关键。

总结:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值