今日继续学习树莓派4B 4G:(Raspberry Pi,简称RPi或RasPi)
本人所用树莓派4B 装载的系统与版本如下:
版本可用命令 (lsb_release -a) 查询:
Opencv 版本是4.5.1:
OpenCv颜色追踪_程序手动调试HSV色彩空间_检测灰度图中的圆
今日学习的程序主要是为了能够手动微调整好更为适合多变环境的HSV色彩空间
文章提供测试代码讲解,整体代码贴出、测试效果图
目录
实验目的:
实时地从视频流中检测特定颜色范围内的圆形物体。
用户可以通过Trackbars调整HSV颜色阈值来指定要检测的HSV颜色范围。使得程序对特定颜色小球的检测更为准确
检测到的圆形物体将在原始帧上被绘制出来,并根据其大小以不同的颜色和线宽进行区分。此外,如果检测到的圆的半径超过某个阈值(在这里是35),则会设置一个标志(
buzz
)。实验全部过程视频:
OpenCv颜色追踪_程序手动调试HSV色彩空间_检测圆
完整实例代码贴出:
实时地从视频流中检测特定颜色范围内的圆形物体。
可以通过Trackbars调整HSV颜色阈值来指定要检测圆的颜色范围。
# -*- coding: utf-8 -*- import cv2 import numpy as np import time kernel = np.ones((5,5),np.uint8) # 从网络摄像头获取输入 cap = cv2.VideoCapture(0) time.sleep(0.5) # 将视频尺寸减小到320x240,这样rpi处理速度就会更快 cap.set(3,320) cap.set(4,240) #第一个空回调函数 def nothing(x): pass # 创建一个供以后使用的窗口 cv2.namedWindow('HueComp') cv2.namedWindow('SatComp') cv2.namedWindow('ValComp') cv2.namedWindow('closing') cv2.namedWindow('tracking') # 创建跟踪条的最小和最大的色调,饱和度和价值 # 允许用户实时调整参数值HSV cv2.createTrackbar('hmin', 'HueComp',12,179,nothing) cv2.createTrackbar('hmax', 'HueComp',37,179,nothing) cv2.createTrackbar('smin', 'SatComp',96,255,nothing) cv2.createTrackbar('smax', 'SatComp',255,255,nothing) cv2.createTrackbar('vmin', 'ValComp',186,255,nothing) cv2.createTrackbar('vmax', 'ValComp',255,255,nothing) while(1): buzz = 0 #读取帧并转换到HSV空间 _, frame = cap.read() hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) hue,sat,val = cv2.split(hsv) #获取Trackbar的当前值 hmn = cv2.getTrackbarPos('hmin','HueComp') hmx = cv2.getTrackbarPos('hmax','HueComp') smn = cv2.getTrackbarPos('smin','SatComp') smx = cv2.getTrackbarPos('smax','SatComp') vmn = cv2.getTrackbarPos('vmin','ValComp') vmx = cv2.getTrackbarPos('vmax','ValComp') #应用HSV阈值 hthresh = cv2.inRange(np.array(hue),np.array(hmn),np.array(hmx)) sthresh = cv2.inRange(np.array(sat),np.array(smn),np.array(smx)) vthresh = cv2.inRange(np.array(val),np.array(vmn),np.array(vmx)) # 组合HSV阈值 使用按位与操作来组合三个HSV分量的阈值结果,从而得到颜色范围内所有像素的掩码。 tracking = cv2.bitwise_and(hthresh,cv2.bitwise_and(sthresh,vthresh)) #形态学操作 #对掩码进行膨胀、闭操作和高斯模糊,以减少噪声并增强圆形物体的检测。 dilation = cv2.dilate(tracking,kernel,iterations = 1) closing = cv2.morphologyEx(dilation, cv2.MORPH_CLOSE, kernel) closing = cv2.GaussianBlur(closing,(5,5),0) #使用霍夫圆变换来检测圆形。 circles