树莓派4B_OpenCv学习笔记13:OpenCv颜色追踪_程序手动调试HSV色彩空间_检测圆

今日继续学习树莓派4B 4G:(Raspberry Pi,简称RPi或RasPi)

 本人所用树莓派4B 装载的系统与版本如下:

 版本可用命令 (lsb_release -a) 查询:

 Opencv 版本是4.5.1:

 OpenCv颜色追踪_程序手动调试HSV色彩空间_检测灰度图中的圆

今日学习的程序主要是为了能够手动微调整好更为适合多变环境的HSV色彩空间

文章提供测试代码讲解,整体代码贴出、测试效果图

目录

实验目的:

实验大致过程视频:

完整实例代码贴出:

代码小结:

代码实验操作与测试结果图:

应用HSV阈值函数 cv2.inRange():

组合HSV阈值 cv2.bitwise_and():

形态学操作函数:(膨胀/腐蚀/开运算/闭运算):

高斯模糊cv2.GaussianBlur():

 霍夫圆变换来检测圆形:

网上查阅资料贴出:


实验目的:

实时地从视频流中检测特定颜色范围内的圆形物体。

用户可以通过Trackbars调整HSV颜色阈值来指定要检测的HSV颜色范围。使得程序对特定颜色小球的检测更为准确

检测到的圆形物体将在原始帧上被绘制出来,并根据其大小以不同的颜色和线宽进行区分。此外,如果检测到的圆的半径超过某个阈值(在这里是35),则会设置一个标志(buzz)。

实验全部过程视频:

OpenCv颜色追踪_程序手动调试HSV色彩空间_检测圆

完整实例代码贴出:

实时地从视频流中检测特定颜色范围内的圆形物体。

可以通过Trackbars调整HSV颜色阈值来指定要检测圆的颜色范围。

# -*- coding: utf-8 -*-
import cv2
import numpy as np
import time  

kernel = np.ones((5,5),np.uint8)
# 从网络摄像头获取输入
cap = cv2.VideoCapture(0)

time.sleep(0.5)

# 将视频尺寸减小到320x240,这样rpi处理速度就会更快
cap.set(3,320)
cap.set(4,240)

#第一个空回调函数
def nothing(x):
    pass

# 创建一个供以后使用的窗口
cv2.namedWindow('HueComp')
cv2.namedWindow('SatComp')
cv2.namedWindow('ValComp')
cv2.namedWindow('closing')
cv2.namedWindow('tracking')

# 创建跟踪条的最小和最大的色调,饱和度和价值
# 允许用户实时调整参数值HSV
cv2.createTrackbar('hmin', 'HueComp',12,179,nothing)
cv2.createTrackbar('hmax', 'HueComp',37,179,nothing)

cv2.createTrackbar('smin', 'SatComp',96,255,nothing)
cv2.createTrackbar('smax', 'SatComp',255,255,nothing)

cv2.createTrackbar('vmin', 'ValComp',186,255,nothing)
cv2.createTrackbar('vmax', 'ValComp',255,255,nothing)


while(1):
    buzz = 0

   #读取帧并转换到HSV空间
    _, frame = cap.read()
    hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
    hue,sat,val = cv2.split(hsv)

	#获取Trackbar的当前值
    hmn = cv2.getTrackbarPos('hmin','HueComp')
    hmx = cv2.getTrackbarPos('hmax','HueComp')
    
    smn = cv2.getTrackbarPos('smin','SatComp')
    smx = cv2.getTrackbarPos('smax','SatComp')

    vmn = cv2.getTrackbarPos('vmin','ValComp')
    vmx = cv2.getTrackbarPos('vmax','ValComp')

	#应用HSV阈值
    hthresh = cv2.inRange(np.array(hue),np.array(hmn),np.array(hmx))
    sthresh = cv2.inRange(np.array(sat),np.array(smn),np.array(smx))
    vthresh = cv2.inRange(np.array(val),np.array(vmn),np.array(vmx))
	# 组合HSV阈值 使用按位与操作来组合三个HSV分量的阈值结果,从而得到颜色范围内所有像素的掩码。
    tracking = cv2.bitwise_and(hthresh,cv2.bitwise_and(sthresh,vthresh))
	
	#形态学操作
	#对掩码进行膨胀、闭操作和高斯模糊,以减少噪声并增强圆形物体的检测。
    dilation = cv2.dilate(tracking,kernel,iterations = 1)
    closing = cv2.morphologyEx(dilation, cv2.MORPH_CLOSE, kernel)
    closing = cv2.GaussianBlur(closing,(5,5),0)

	#使用霍夫圆变换来检测圆形。
    circles
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NULL指向我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值