电路基础 ---- 运放里的虚短虚断

令人稀里糊涂的虚短虚断

想必好多人在学习硬件电路分析时,都会听到虚短虚断这个专业术语,但是对于新手玩家,这个术语不好理解,比如我自己,经常将这两个概念混淆。最近刷到大佬的视频,讲解的非常简洁易懂,特意做个小笔记!

1.电子小白学不会运放?一开始掌握这两个用法就够了!
2.如何理解运放的虚短虚断,他们有啥用?

运算放大电路的特点

对于如下运放结构图:
image

  • U p > U n U_{p}>U_{n} Up>Un时, U o u t = V + U_{out}=V_{+} Uout=V+
  • U p < U n U_{p}<U_{n} Up<Un时, U o u t = V − U_{out}=V_{-} Uout=V
  • U p ≈ U n U_{p} \approx U_{n} UpUn时, U o u t = A ( U p − U n ) U_{out}=A(U_{p}-U_{n}) Uout=A(UpUn)(A为放大倍数)

当引入负反馈时,如下所示:
image
负反馈可以修正 U n U_{n} Un的大小,使 U n U_{n} Un无限逼近 U p U_{p} Up的值,从而使运放进入线性放大区间,从而实现信号的放大

虚断----输入阻抗无穷大

如下所示:当一个信号接入到输入端,此时流过该线路中的电流为0
image

那为什么流过的电流为0呢?答案就是因为远算放大器的输入阻抗无穷大

正因为如此,流过的电流为0,如同断路的状态,故称之为“虚断”

虚短----负反馈的存在

如下所示:
image

由于负反馈的存在,使 U n U_{n} Un无限逼近 U p U_{p} Up的值,从而使得 U n U_{n} Un U p U_{p} Up近似短路,故称之为“虚短”

电路分析步骤

对于如下的运算电路:
image

  1. 由于输入阻抗无穷大(即虚断),流过电阻 R 3 R_{3} R3进入正输入端的电流 I + = 0 I_{+}=0 I+=0,或记为 I 3 = 0 I_{3}=0 I3=0
  2. 电阻 R 3 R_{3} R3两端的电压 U 3 = I 3 × R 3 = 0 U_{3}=I_{3}\times R_{3}=0 U3=I3×R3=0
  3. U p = U i n − U 3 = U i n − 0 = U i n U_{p}=U_{in}-U_{3}=U_{in}-0=U_{in} Up=UinU3=Uin0=Uin
  4. 由于负反馈的存在(即虚短),使得 U n = U p = U i n U_{n}=U_{p}=U_{in} Un=Up=Uin
  5. 在负反馈通路中,电流由 U o u t U_{out} Uout流向 U n U_{n} Un,故流过电阻 R 1 R_{1} R1的电流为 I 1 = U o u t − U n R 1 I_{1}=\frac{U_{out}-U_{n}}{R_{1}} I1=R1UoutUn
  6. 流过电阻 R 2 R_{2} R2的电流 I 2 = U n − 0 R 2 I_{2}=\frac{U_{n}-0}{R_{2}} I2=R2Un0
  7. 根据电流分流,可知 I 1 = I 2 + I − = I 2 I_{1}=I_{2}+I_{-}=I_{2} I1=I2+I=I2(虚断,负输入端 I − = 0 I_{-}=0 I=0
  8. 所以根据 I 1 = I 2 I_{1}=I_{2} I1=I2,得出关系: U o u t = ( 1 + R 1 R 2 ) U n U_{out}=(1+\frac{R_{1}}{R_{2}})U_{n} Uout=(1+R2R1)Un
  9. 在第4步中有 U n = U i n U_{n}=U_{in} Un=Uin,故可得输出与输入之间的关系: U o u t = ( 1 + R 1 R 2 ) U i n U_{out}=(1+\frac{R_{1}}{R_{2}})U_{in} Uout=(1+R2R1)Uin
### 差分放大器中的概念 在理想运算放大器的工作条件下,存在两个重要的假设:“”和“”。这两个特性极大地简化了差分放大器的分析过程。 #### (Virtual Short) 当提到“”,指的是输入端之间的电位差异非常接近于零。具体来说,在线性工作区内的理想情况下,反相输入端 \( u_- \) 和同相输入端 \( u_+ \) 的电压几乎相同[^1]: \[ u_+ ≈ u_- \] 这种现象被称为“”,因为尽管实际物理上并没有直接连接这两点形成真正的路,但从电气特性的角度来看,它们表现得如同被接一样。值得注意的是,“”的有效性依赖于反馈网络使得增益足够大以至于能够忽略不计的小信号偏差[xd]保持很小的情况下成立。 #### (Virtual Open Circuit) 另一方面,“”描述了一个事实——即对于理想的运算放大器而言,其输入阻抗无穷大,这意味着流入到输入端口的电流为零。因此,在分析过程中可以假定没有任何电流流过输入节点,这就好像是这些路径处于开路状态一般[^2]: \[ i_{in} = 0 \] 此性质允许工程师们更容易地计算复杂电路中的各个支路电流分布情况而不必考虑来自本身的贡献。 #### 应用实例:非反转放大器配置下的简单例子 为了更好地理解如何利用上述原理来进行具体的电路设计与分析,下面给出一个基于非反转放大器结构的应用案例说明: 给定如下图所示的一个典型单电源供电的非反转直流耦合放大器拓扑, ![Non-Inverting Amplifier](https://upload.wikimedia.org/wikipedia/commons/thumb/7/7c/Op-Amp_Non-inverting_amplifier.svg/800px-Op-Amp_Non-inverting_amplifier.svg.png) 通过引入“”条件可知, \[ V_{out}=V_{ref}(1+\frac{R_f}{R_g})\] 这\( R_f\)代表反馈电阻而\( R_g\)则是接地侧串联接入的电阻元件;由于采用了负反馈机制从而实现了稳定可控的比例关系。同时依据“”的定义,则有无任何净电流注入至内部节点A处。 ```python def non_inverting_gain(Rf, Rg): """Calculate the gain of a non-inverting amplifier.""" return 1 + float(Rf)/float(Rg) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@Luminescence

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值