FID和IS的区别

📊 生成模型评估:你选 IS 还是 FID?

在评估 GAN、Diffusion 等图像生成模型时,两个最常被提到的指标是:

🔹IS (Inception Score)
🔹FID (Fréchet Inception Distance)


🧠 Inception Score(IS)

IS 只看生成图像自身

  • 图像是否清晰?(预测分布是否尖锐)✅

  • 图像是否多样?(预测类别分布是否均匀)✅

🎯 数学形式是 KL 散度,衡量生成图像的每个预测 p(y∣x)p(y|x) 和平均预测 p(y)p(y) 的差异。

🚫 缺点:没有对比真实图像,很容易“刷分”。你只需要每类生成一张清晰图就能得高分。


🧠 Fréchet Inception Distance(FID)

FID 是“实打实的对比”:

  • 把真实图像和生成图像都送入 Inception 模型

  • 比较它们提取出的特征分布差异(均值 + 协方差)

🎯 数学本质是 Fréchet 距离(两个高斯分布的距离)

✅ 更贴近人眼感知
✅ 能捕捉“模糊”、“模式坍缩”等问题
✅ 是学术界最主流的评估指标


📌 类比总结:

指标看什么参考真实图像?容易刷分?
IS生成图像本身❌ 否✅ 容易
FID生成图像 vs 真实图像✅ 是❌ 不容易

🧭 实战建议:

在论文和工业应用中,IS 更适合快速测试,但FID 更值得信赖和发表

👉 所以如果你正在训练 GAN,请优先报告 FID,IS 作为辅助参考即可!


📌 你平时用哪个指标评估你的模型效果?欢迎评论交流👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值