YOLO(You Only Look Once)是一种实时目标检测算法,以其高速度和较高精度著称。以下是各版本的详细介绍及优缺点分析:
1. YOLOv1(2016年)
原理:
- 将输入图像划分为 S×SS \times SS×S 的网格,每个网格预测多个边界框和类别置信度。
- 使用单个神经网络直接对图像进行前向传播预测边界框和类别标签。
优点:
- 速度快,适合实时应用。
- 模型结构简单,易于实现和训练。
缺点:
- 对小目标检测效果差,容易漏检。
- 容易出现定位误差,尤其是重叠物体的检测不准确。
2. YOLOv2(2017年)
原理:
- 引入锚框(Anchor Boxes),提升定位精度。
- 使用**批归一化(Batch Normalization)**加快收敛速度并减少过拟合。
- 支持多尺度训练,增强模型的适应性。
优点:
- 提升了定位精度,尤其是对多尺度物体的检测能力增强。
- 支持多类别分类(YOLO9000可以检测9000多种类别)。
缺点:<