💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
📚2 运行结果
2.1 场景1
2.2 场景2
2.3 场景3
2.4 场景4
🎉3 参考文献
🌈4 Matlab代码及数据

💥1 概述
文献来源:

经济调度是电力系统运行中的一个基本问题
,它是指发电机和柔性负荷在满足一系列运行约束的
条件下
,
使整个电力系统运行的社会福利最大化的优化问题。
传统上采用集中优化技术来解决经济调度问题,
其中包括经典优化方法
[
1
]
和现代人工智能方法[
2
-
4
]
。
然而
,
当采用集中优化方法时
,
系统需要调度中心发布指令调度整个系统中所有的发电机和柔性负
荷
,
调度中心需要与每一个调度对象进行信息交互
[
5
]
。并 且,
柔性负荷的广泛渗透以及电力元件需要的“即插即用
”
技术将会使电力网和通信网拓扑结构多变[
6
]
,
导致集中优化方法需要较高的通信拓扑建设成本。
因此
,
需要适应性更强的优化算法
,
在通信受限和不可靠甚至调度中心失效的情况下仍能 有效地运行[7
]
。
分布式优化为解决上述问题提供了新方法[
8
-
9
]
。在分布式优化算法中,
一个基本的问题就是需要所有的节点都能达到一致,
即多智能体系统中的
一致性
[
10
]
。
此类一致性问题已经在很多领域都进行了研究,
比如机器人系统
[
11
]
、
无人机系统
[
12
]
,
以及传感器网络系统[
13
]
。
多智能体系统的一致性算法能够应用于电力系统并实现其分布式优化运行[
8
-
9
,
14
-
15
]
。
电力系统是一系列可控电力设备(
发电机和柔性负荷
)
的有机组合
,这些可控电力设备通过通信网络实现信息交互[
6
]
。将发电机和柔性负荷建模为智能体,
进一步将电力系统建模为多智能体系统,
发电机和柔性负荷
(
智能体)
通过局部通信网络与其他智能体进行信息交互
,
实现整个电力系统
(
多智能系统
)
的协调优化运行
。文献[
8
]
提出了一种
“
Leader
-
Follower
”
分布式一致性算 法;
文 献
[
9
]
提 出 几 种
Leader
的 选 择 方 法
;
文 献
[
14
]
提出了一种两层分布式一致性算法
;
文献
[
15
]通过创新项来实现完全分布式最优化。
值得关注的是,
柔性负荷在电力系统中的渗透越来越广泛
,
而上述文献都没有考虑经济调度中的柔性负荷。
本文介绍了一致性算法的基本概念
,
应用一致性算法,
以发电机组的增量成本
(
IC
)
与柔性负荷的增量效益(
IB
)
作为一致性变量
,
设计一致性算法实现计及柔性负荷的电力系统分布式经济调度,
算例仿真与分析表明了本文提出的分布式经济调度策略能够实现柔性负荷“
即插即用
”,
降低通信网投资
,
有效应对通信网拓扑结构多变的问题。

📚2 运行结果

2.1 场景1
验证了该分布式调度算法与集中式调度算法一样,能收敛到最优解;

2.2 场景2
验证了该分布式调度策略对不同通信拓扑的适应性;

2.3 场景3
验证了该分布式调度策略能够有效应对电力元件功率约束发生作用的情形;

2.4 场景4
验证了该分布式调度策略能够使电力元件具备“即插即用”的能力。

部分代码:
for i=1:1:10 %判断pg是否越限并赋值
if (ll(t,i)-be(i))/(2*ga(i))>=pgmax(i)
pgg(t+1,i)=pgmax(i);
elseif (ll(t,i)-be(i))/(2*ga(i))<=pgmin(i)
pgg(t+1,i)=pgmin(i);
else
pgg(t+1,i)=(ll(t,i)-be(i))/(2*ga(i));
end
end
for j=1:1:19 %判断pd是否越限并赋值
if (ll(t,j+10)-b(j))/(2*c(j))>=pdmax(j)
pdd(t+1,j)=pdmax(j);
elseif (ll(t,j+10)-b(j))/(2*c(j))<=pdmin(j)
pdd(t+1,j)=pdmin(j);
else
pdd(t+1,j)=(ll(t,j+10)-b(j))/(2*c(j));
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]谢俊,陈凯旋,岳东等.基于多智能体系统一致性算法的电力系统分布式经济调度策略[J].电力自动化设备,2016,36(02):112-117.DOI:10.16081/j.issn.1006-6047.2016.02.018.
🌈4 Matlab代码及数据