基于Q-learning算法的迷宫路径规划问题研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


💥1 概述

基于Q-learning算法的迷宫路径规划是一个经典的强化学习问题。Q-learning是一种基于价值迭代的强化学习算法,用于学习如何在给定的环境中做出最佳的动作,以获得最大的累积奖励。

在迷宫路径规划中,迷宫可以被建模成一个网格世界,其中包含了起点、终点以及障碍物。Q-learning算法通过不断地与环境进行交互来学习到每个状态下采取每个动作的价值,即Q值。在迷宫路径规划问题中,状态通常是代表了迷宫中的一个位置,动作则是移动到相邻位置的操作。

以下是使用Q-learning算法解决迷宫路径规划问题的一般步骤:

1. **定义状态和动作**:将迷宫的每个位置定义为一个状态,将可以采取的移动操作定义为动作。通常动作包括向上、向下、向左和向右移动。

2. **初始化Q值表**:为每个状态-动作对初始化一个Q值,可以将所有Q值初始化为0,或者随机初始化。

3. **选择动作**:根据当前的状态以一定的策略(例如ε-greedy策略)选择一个动作。ε-greedy策略是一种在探索和利用之间进行权衡的方法,以一定的概率ε选择随机动作,以(1-ε)的概率选择当前Q值最大的动作。

4. **执行动作**:根据选择的动作执行移动,并观察环境的反馈,包括下一个状态和奖励。

5. **更新Q值**:根据Q-learning的更新规则更新Q值,以使其逼近最优Q值。更新规则通常使用贝尔曼方程,例如:\[ Q(s,a) \leftarrow Q(s,a) + \alpha \cdot \left[ r + \gamma \cdot \max_{a'} Q(s',a') - Q(s,a) \right] \]
其中,\( Q(s,a) \) 是状态\( s \)下采取动作\( a \)的Q值,\( r \) 是执行动作\( a \)后获得的奖励,\( s' \) 是执行动作\( a \)后的下一个状态,\( \alpha \) 是学习率,\( \gamma \) 是折扣因子。

6. **重复步骤3至5**:不断地与环境交互,更新Q值,直到达到停止条件(例如达到最大迭代次数或者Q值收敛)。

7. **得到最优策略**:根据学习到的Q值表,可以得到最优策略,即在每个状态下选择具有最大Q值的动作。

8. **应用最优策略**:使用最优策略在迷宫中进行路径规划,从起点到终点。

通过以上步骤,可以使用Q-learning算法解决迷宫路径规划问题,找到从起点到终点的最优路径。

强化学习(Sutton & Barto, 1998)是一种基于经验驱动和目标导向的学习与决策制定的原则性数学框架。强化学习从代理与环境的互动开始,代理在环境中采取行动,推动其进入下一个状态并根据该行动的优良程度获得奖励。如图1所示,在任何时间步骤t,代理处于状态s,采取行动a,环境得到奖励r,并观察到下一个状态s'。强化学习算法提高了采取良好行动的概率,以实现期望的目标。在本示例中,我们将使用Q-learning技术解决n x n迷宫问题。

Q学习
强化学习通常可以分为无模型和基于模型两种,如图2所示。在基于模型的强化学习中,使用环境的动态模型,而在无模型的强化学习中,则学习策略或值函数。

详细讲解见第4部分。

📚2 运行结果

部分代码:

maze(n,n) = 10;
%% 
% _For a stored solvable maze uncomment following:_

% load('maze12x12.mat');
%% 
% Display maze in matrix form is:

disp(maze)
%% Visualizing the MAZE
% * Check for atleast one path between Start & Goal
% * Dimension of maze 12x12 i.e., n=12
% * Starting Position is (1,1)
% * Goal is to reach (12,12)
%%
n=length(maze);

figure
imagesc(maze)
colormap(winter)

for i=1:n
    for j=1:n
        if maze(i,j)==min(maze)
            text(j,i,'X','HorizontalAlignment','center')
        end
    end
end
text(1,1,'START','HorizontalAlignment','center')
text(n,n,'GOAL','HorizontalAlignment','center')

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]褚建华.Q-learning强化学习算法改进及其应用研究[D].北京化工大学[2024-04-15].DOI:10.7666/d.y1557938.

[2]赵元,张合新.基于目标状态距离简化Q-learning算法的迷宫路径规划[J].火箭军工程大学学报(自然科学版), 2019(000-004).

[3]万谦,刘玮,徐龙龙,等.基于Q-learning的不确定环境BDI Agent最优策略规划研究[J].计算机工程与科学, 2019, 41(1):7.DOI:10.3969/j.issn.1007-130X.2019.01.022.

🌈4 Matlab代码、数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值