💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于CNN-BiGRU-Attention的自行车租赁数量预测研究,结合了卷积神经网络(CNN)在特征提取方面的优势、双向门控循环单元(BiGRU)在处理时序数据上的能力以及注意力机制(Attention)在关注重要信息方面的特长,旨在更精准地预测自行车租赁数量。以下是对该研究的详细分析:
一、研究背景与意义
随着共享单车市场的快速发展,准确预测自行车租赁数量对于优化资源配置、提高运营效率具有重要意义。CNN-BiGRU-Attention模型通过融合多种深度学习技术的优点,能够捕捉影响租赁数量的多种因素及其之间的复杂关系,提高预测的准确性和稳定性。
二、模型构建与原理
1. 数据预处理
- 数据收集:收集自行车租赁系统的历史数据,包括租赁数量、时间信息(如日期、小时)、天气状况(如温度、湿度、风速等)、地理位置等。
- 数据清洗:去除异常值、缺失值等,确保数据的完整性和准确性。
- 特征工程:根据业务需求和数据特点,提取并转换有用的特征。例如,对于分类特征(如天气状况),可以采用one-hot编码;对于连续特征(如温度、湿度),则进行归一化处理。
2. CNN-BiGRU-Attention模型构建
- CNN部分:负责提取输入数据中的局部特征。在自行车租赁数量预测中,CNN可以捕捉不同时间窗口内租赁数量的变化趋势和周期性规律。
- BiGRU部分:负责处理时序数据,捕捉数据中的长期依赖关系。BiGRU通过前向和后向两个方向的GRU单元,能够同时考虑过去和未来的信息,提高预测的精度。
- Attention机制:在BiGRU的输出上引入注意力机制,使得模型能够更加关注对预测结果影响较大的特征或时间段,进一步提高预测的准确性。
- 融合与输出:将CNN提取的特征、BiGRU的输出以及Attention机制的权重进行融合,通过全连接层得到最终的自行车租赁数量预测值。
三、模型训练与优化
- 损失函数:选择合适的损失函数(如均方误差MSE)来衡量预测结果与实际值之间的差异。
- 优化算法:使用梯度下降法或其变种(如Adam优化器)来优化模型参数,最小化损失函数。
- 超参数调优:通过交叉验证等方法调整CNN和BiGRU的层数、卷积核大小、学习率、注意力机制的参数等超参数,以提高模型性能。
- 正则化技术:为防止过拟合,可以采用L1/L2正则化、Dropout等技术。
四、研究应用与展望
1. 应用场景
- 实时预测与调度:将预测模型与实时监控系统相结合,实现自行车租赁数量的实时预测和动态调度。
- 运营决策支持:为自行车租赁公司的运营决策提供数据支持,如优化车辆投放策略、调整租金价格等。
- 城市规划:为城市规划者提供自行车租赁系统的使用情况数据,为制定自行车相关基础设施和政策提供参考。
2. 研究展望
- 多源数据融合:引入更多数据源(如交通流量、人口迁移等),提高预测的准确性和全面性。
- 模型融合:结合其他深度学习模型(如Transformer等)的优点,构建混合模型以提高预测性能。
- 可解释性研究:加强对CNN-BiGRU-Attention模型预测结果的可解释性研究,提高模型的透明度和可信度。
综上所述,基于CNN-BiGRU-Attention的自行车租赁数量预测研究通过融合多种深度学习技术的优点,实现了对自行车租赁数量的精准预测。未来随着技术的不断发展和数据的不断积累,该领域的研究将更加深入和广泛。
📚2 运行结果
部分代码:
function [mae,rmse,mape,error]=calc_error(x1,x2)
error=x2-x1; %计算误差
rmse=sqrt(mean(error.^2));
disp(['1.均方差(MSE):',num2str(mse(x1-x2))])
disp(['2.根均方差(RMSE):',num2str(rmse)])
mae=mean(abs(error));
disp(['3.平均绝对误差(MAE):',num2str(mae)])
mape=mean(abs(error)/x1);
disp(['4.平均相对百分误差(MAPE):',num2str(mape*100),'%'])
Rsq1 = 1 - sum((x1 - x2).^2)/sum((x1 - mean(x2)).^2);
disp(['5.R2:',num2str(Rsq1*100),'%'])
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]李婷婷.城市公共自行车租赁点选址规划研究[D].北京交通大学,2010.DOI:10.7666/d.y1961114.
[2]陆朕.公共自行车租赁点车辆数的预测方法研究[D].南京师范大学,2015.DOI:10.7666/d.Y2857359.
[3]韩军红,魏越,侯礼兴.公共自行车租赁点规模优化[J].山西建筑, 2023, 49(22):57-61.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取