【多变量输入超前多步预测】基于TCN-BiGUR的光伏功率预测研究(Matlab代码实现)

                             💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、TCN-BiGRU模型概述

二、多变量输入

三、超前多步预测

四、优势与挑战

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

【多变量输入超前多步预测】基于TCN-BiGRU(时间卷积网络结合双向门控循环单元)的光伏功率预测研究,是一种结合了深度学习技术在时间序列数据处理上的优势的方法,旨在提高光伏功率预测的准确性和稳定性。以下是对该研究领域的详细分析:

一、TCN-BiGRU模型概述

时间卷积网络(TCN)

  • 优势:TCN通过空洞因果卷积等结构,能够有效地提取时间序列中的局部和全局特征,同时保留时间信息。它能够处理任意长度的输入序列,并保持输出序列与输入序列长度相同,适用于需要保持时间分辨率的预测任务。
  • 作用:在光伏功率预测中,TCN负责捕捉光伏输出功率数据中的时间序列特征,为后续处理提供丰富的特征信息。

双向门控循环单元(BiGRU)

  • 优势:BiGRU由两个方向的GRU(门控循环单元)组成,能够同时捕捉序列的正向和反向信息,从而更全面地学习序列的长期依赖关系。这种双向结构使得BiGRU在处理时间序列数据时,能够同时考虑过去和未来的信息,提高预测的精度和稳定性。
  • 作用:在光伏功率预测中,BiGRU利用TCN提取的特征信息,进一步学习这些特征之间的时序依赖关系,实现多步超前预测。

二、多变量输入

在基于TCN-BiGRU的光伏功率预测研究中,多变量输入是提高预测准确性的关键。这些变量通常包括:

  • 太阳辐射强度:直接影响光伏板的能量转换效率。
  • 温度:影响光伏电池的性能和效率。
  • 风速与风向:与云量相关,间接影响太阳辐射强度。
  • 湿度大气压等其他气象因素:也可能对光伏功率输出产生影响。
  • 历史功率数据:反映光伏系统的历史运行状态和变化趋势。

通过引入多变量输入,TCN-BiGRU模型能够更全面地捕捉光伏功率输出的影响因素,从而提高预测的准确性和鲁棒性。

三、超前多步预测

超前多步预测是指在当前时间点预测未来多个时间点的光伏功率输出。这对于电力系统的调度和运行至关重要。基于TCN-BiGRU的模型通过以下步骤实现超前多步预测:

  1. 数据预处理:对收集到的多变量输入数据进行清洗、归一化等预处理操作,以提高数据质量和模型的训练效率。
  2. 特征提取:使用TCN对预处理后的时间序列数据进行特征提取,获取与光伏功率相关的局部和全局特征。
  3. 时序依赖学习:将TCN的输出作为BiGRU的输入,利用BiGRU捕捉这些特征之间的时序依赖关系,实现多步超前预测。
  4. 模型训练与评估:使用历史数据对TCN-BiGRU模型进行训练,并通过独立的测试数据集对训练好的模型进行验证和评估。评估指标通常包括均方根误差(RMSE)、平均绝对误差(MAE)等。

四、优势与挑战

优势

  • 结合了两种深度学习技术的优势:TCN在特征提取方面的优势和BiGRU在时序依赖学习方面的优势相结合,提高了光伏功率预测的准确性和稳定性。
  • 适用于多变量输入和超前多步预测:能够灵活处理多变量输入数据,并实现对未来多个时间点的光伏功率输出进行预测。

挑战

  • 数据质量要求高:高质量的数据是训练准确模型的基础。在实际应用中,数据往往存在噪声、缺失等问题,需要进行有效的数据预处理和特征选择。
  • 模型复杂度较高:TCN-BiGRU模型结构相对复杂,参数数量较多,对计算资源的要求也较高。在实际应用中,需要根据具体情况选择合适的模型规模和训练策略。
  • 预测不确定性:由于光伏功率输出受到多种不确定因素的影响(如天气突变等),因此预测结果仍存在一定的不确定性。在实际应用中,需要结合其他信息来源和专家经验来综合判断预测结果的可靠性。

综上所述,基于TCN-BiGRU的光伏功率预测研究在采用多变量输入和超前多步预测策略时展现出了显著的优势和潜力。未来随着技术的不断进步和数据质量的提升,相信这一研究领域将取得更加丰硕的成果。

📚2 运行结果

 

部分代码:

function [mae,rmse,mape,error]=calc_error(x1,x2)

error=x2-x1;  %计算误差
rmse=sqrt(mean(error.^2));
disp(['1.均方差(MSE):',num2str(mse(x1-x2))])
disp(['2.根均方差(RMSE):',num2str(rmse)])

 mae=mean(abs(error));
disp(['3.平均绝对误差(MAE):',num2str(mae)])

 mape=mean(abs(error)/x1);
 disp(['4.平均相对百分误差(MAPE):',num2str(mape*100),'%'])
Rsq1 = 1 - sum((x1 - x2).^2)/sum((x1 - mean(x2)).^2);
disp(['5.R2:',num2str(Rsq1*100),'%'])
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]史凯钰,张东霞,韩肖清,等.基于LSTM与迁移学习的光伏发电功率预测数字孪生模型[J].电网技术, 2022(004):046.DOI:10.13335/j.1000-3673.pst.2021.0738.

[2]吉锌格,李慧,刘思嘉,等.基于MIE-LSTM的短期光伏功率预测[J].电力系统保护与控制, 2020, 48(7):8.DOI:CNKI:SUN:JDQW.0.2020-07-006.

[3]刘兴霖,黄超,王龙,等.基于聚类和LSTM的光伏功率日前逐时鲁棒预测[J].计算机技术与发展, 2023, 33(3):120-126.DOI:10.3969/j.issn.1673-629X.2023.03.018.

[4]王东风,刘婧,黄宇,等.结合太阳辐射量计算与CNN-LSTM组合的光伏功率预测方法研究[J].太阳能学报, 2024, 45(2):443-450.DOI:10.19912/j.0254-0096.tynxb.2022-1542.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值