💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于Transformer的自行车租赁数量预测研究是一个结合了深度学习技术和时间序列分析的前沿领域。Transformer模型以其独特的自注意力机制,在处理序列数据方面展现出了强大的能力,因此也被逐渐应用于自行车租赁数量预测等时间序列预测任务中。以下是对该研究的详细探讨:
一、研究背景与意义
随着共享经济的兴起和城市居民对环保出行方式的追求,自行车租赁服务已成为城市交通系统的重要组成部分。然而,自行车租赁数量的波动受多种因素影响,如天气、季节、工作日与节假日等,传统的预测方法难以全面考虑这些复杂因素。因此,利用Transformer模型进行自行车租赁数量预测,对于优化资源配置、提升用户体验具有重要意义。
二、Transformer模型介绍
Transformer是一种基于自注意力机制的深度学习模型,最初用于自然语言处理任务,但近年来也被广泛应用于时间序列预测领域。Transformer模型的核心部件包括编码器(Encoder)和解码器(Decoder),其中编码器负责将输入序列编码成高维特征向量,解码器则根据编码器的输出逐步预测未来的时间步。自注意力机制允许模型在生成预测时注意到输入序列中不同位置的相关信息,从而捕捉序列中的长期依赖关系。
三、模型构建与训练
1. 数据收集与预处理
收集自行车租赁公司的历史数据,包括每日或每小时的租赁数量、天气情况(如温度、降水量等)、季节、节假日等信息。对数据进行预处理,包括缺失值处理、异常值处理、特征选择等,以保证数据的质量和可用性。
2. 特征工程
根据自行车租赁数量的影响因素,构建合适的特征集。例如,可以将时间特征(如日期、小时)转换为数值型特征,将天气特征(如温度、降水量)进行归一化处理,并考虑加入节假日等哑变量特征。
3. 模型构建
基于Transformer模型构建自行车租赁数量预测模型。通常,可以将编码器部分用于提取输入序列的特征表示,而解码器部分则用于生成未来的租赁数量预测。为了简化模型,也可以只使用编码器部分进行预测,即直接利用编码器的输出作为预测结果。
4. 模型训练
将预处理后的数据输入到Transformer模型中,进行训练。在训练过程中,需要设置合适的损失函数(如均方误差损失)和优化器(如Adam优化器),并通过调整学习率、批量大小等超参数来优化模型的性能。同时,为了防止过拟合,还可以采用正则化、dropout等策略来提高模型的泛化能力。
四、实验结果与讨论
实验结果表明,基于Transformer的自行车租赁数量预测模型在训练集和测试集上的预测精度均较高。该模型能够有效地捕捉时间序列中的复杂特征和非线性关系,提高预测的准确性和鲁棒性。同时,由于Transformer模型的自注意力机制能够捕捉序列中的长期依赖关系,因此该模型在预测长期趋势方面也具有优势。
然而,Transformer模型也存在一些挑战和改进空间。例如,模型参数较多,需要较长的训练时间和较大的计算资源;对于极端天气或特殊事件等异常情况的处理能力有待提高;此外,模型的预测性能还可能受到数据质量、特征选择等因素的影响。
五、结论与展望
基于Transformer的自行车租赁数量预测模型是一种有效的深度学习模型,能够显著提高预测精度和稳定性。未来研究可以进一步优化模型结构和参数设置,提高模型的训练效率和预测性能;同时,还可以考虑引入更多的外部因素(如用户行为、地理位置等)作为特征输入,以提高模型的预测能力。此外,随着深度学习技术的不断发展,未来还可以探索其他更先进的深度学习模型在自行车租赁数量预测中的应用。
📚2 运行结果
部分代码:
function [mae,rmse,mape,error]=calc_error(x1,x2)
error=x2-x1; %计算误差
rmse=sqrt(mean(error.^2));
disp(['1.均方差(MSE):',num2str(mse(x1-x2))])
disp(['2.根均方差(RMSE):',num2str(rmse)])
mae=mean(abs(error));
disp(['3.平均绝对误差(MAE):',num2str(mae)])
mape=mean(abs(error)/x1);
disp(['4.平均相对百分误差(MAPE):',num2str(mape*100),'%'])
Rsq1 = 1 - sum((x1 - x2).^2)/sum((x1 - mean(x2)).^2);
disp(['5.R2:',num2str(Rsq1*100),'%'])
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]李婷婷.城市公共自行车租赁点选址规划研究[D].北京交通大学,2010.DOI:10.7666/d.y1961114.
[2]陆朕.公共自行车租赁点车辆数的预测方法研究[D].南京师范大学,2015.DOI:10.7666/d.Y2857359.
[3]韩军红,魏越,侯礼兴.公共自行车租赁点规模优化[J].山西建筑, 2023, 49(22):57-61.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取