【RF-SSA-LSTM】随机森林-麻雀优化算法优化时间序列预测研究(Python代码实现)

👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、各组件的基础架构与优势

1. 随机森林(RF)在时间序列预测中的作用

2. 麻雀搜索算法(SSA)的优化机制

3. LSTM的时间序列建模能力

二、RF-SSA-LSTM的协同优化路径

1. 特征工程与参数优化的双通道优化

2. 混合模型工作流程

三、应用案例与性能对比

1. 典型领域应用

2. 模型性能横向对比

四、挑战与未来方向

1. 现存挑战

2. 改进方向

3. 前沿探索

五、结论

📚2 运行结果

2.1 RF特征选择

2.2 LSTM预测 

2.3 SSA-LSTM预测 

2.4 MLP预测

2.5 几种算法比较 

🎉3 参考文献

🌈4 Python代码实现


💥1 概述

参考文献:

 


一、各组件的基础架构与优势

 RF:随机森林指的是利用多棵树对样本进行训练并预测的一种分类器

RF善于处理高维数据,特征遗失数据,和不平衡数据

(1)训练可以并行化,速度快

(2)对高维数据集的处理能力强,它可以处理成千上万的输入变量,并确定最重要的变量,因此被认为是一个不错的降维方法。

(3)在训练集缺失数据时依旧能保持较好的精度(原因:RF随机选取样本和特征;RF可以继承决策树对缺失数据的处理方式)

(4)泛化能力强,因为随机

麻雀搜索算法[18]是一种群体智能优化算法。相对于 PSO[19]、蜻蜓、灰狼等智能优化算法,SSA 求解速率更快、迭代更少。按照麻雀种群的分工不同划分为发现者、加入者和侦察者。适应度高的麻雀作为发现者,为种群寻找食物丰富的区域并为加入者提供位置信息。其位置更新如式(1)所示

 

本文采用的 LSTM 神经网络是循环神经网络的一种改进[20] ,主要是为了解决梯度爆炸、梯度消失[21]等问题而专门设计的, 可以有效保持较长时间的记忆,已经在智能化领域被广泛应用,在预测回归方面也取得了一些成果[22-23]。单元结构图如图 3 所示。

 

LSTM 包含遗忘门、输入门和输出门[24] ,通过控制三个门的状态来更新细胞状态里的数据信息。其计算过程如下:  

1. 随机森林(RF)在时间序列预测中的作用

随机森林通过集成多棵决策树实现预测,具有以下核心优势:

  • 降低偏差与方差:通过Bootstrap采样和特征子集选择,有效缓解单一模型过拟合/欠拟合问题,鲁棒性提升
  • 高维数据处理:可处理含滞后变量(如Xt−1,Xt−2​)、季节性变量的多维度时间序列,通过特征重要性分析筛选关键变量
  • 非线性捕捉:在金融销售预测中,对间歇性数据的零值预测准确率可达89.42%,优于ARIMA等传统模型
  • 多领域适用性:已成功应用于电力负荷预测、尾矿坝变形监测等领域,在小数据集场景下MSE可低至3.782分钟
2. 麻雀搜索算法(SSA)的优化机制

SSA通过模拟麻雀种群觅食行为实现参数优化,改进策略包括:

  • 种群多样性增强:采用Halton序列/Tent映射初始化,解决传统随机初始化分布不均问题
  • 全局搜索优化:融合正弦余弦算法(SCA)扩展搜索范围,结合莱维飞行策略突破局部最优
  • 动态调整机制:引入黄金正弦策略改进发现者位置更新,通过柯西突变增强跳出局部最优能力
  • 时间复杂度控制:改进后算法(如MISSA)保持与原始SSA相同的时间复杂度O(n⋅t)O(n⋅t),提升收敛速度
3. LSTM的时间序列建模能力

LSTM通过门控机制捕捉长期依赖关系:

  • 记忆单元结构:输入门、遗忘门、输出门协同控制信息流动,细胞状态CtCt​实现长期记忆

  • 深度架构设计:堆叠10层LSTM可提升复杂模式学习能力,输入维度支持(batch_size, sequence_length, input_size)
  • 应用验证:在电力负荷预测中,双LSTM层架构使拟合指数达96.2%,MAE降低38%对比传统RNN


二、RF-SSA-LSTM的协同优化路径

1. 特征工程与参数优化的双通道优化
优化层级技术实现性能提升效果
随机森林特征筛选通过Gini重要性评估选择滞后变量、外部协变量,构造最优特征组合尾矿坝预测特征维度降低50%
SSA参数调优优化LSTM的隐藏层神经元数(64→128)、学习率(0.01→0.003)、dropout率(0.3→0.2)温湿度预测RMSE降低22%
模型结构优化RF特征降维→SSA优化LSTM超参数→多层LSTM预测电力负荷预测R²从0.79提升至0.91
2. 混合模型工作流程
  1. 数据预处理阶段

    • 时间序列差分处理(如1阶差分消除趋势性)

    • 滑动窗口构造监督学习数据集(lookback=7时预测误差最小)
    • 随机森林处理缺失值(四分位法填补精度达98.7%)
  2. 特征优化阶段

    • RF计算特征重要性,筛选前12个关键变量(肿瘤分类准确率提升5.2%)
    • 构造多维特征矩阵Xt=[Xt−1,Xt−2,...,Xt−n,Et](Et​为外部变量)
  3. 参数优化阶段

    • SSA优化LSTM的隐藏层数、学习率、batch_size(股票预测MAE降低19%)
    • 自适应学习率调整策略使收敛速度提升30%
  4. 预测与评估

    • 输出层采用线性激活函数映射预测值
    • 评估指标:RMSE、MAE、R²(尾矿坝预测R²=0.98)

三、应用案例与性能对比

1. 典型领域应用
应用场景数据特点模型表现文献来源
尾矿坝变形预测多传感器时序数据(温度、位移)RMSE=0.0129,优于单一LSTM 37%山东工商学院研究
电力峰谷负荷预测15分钟粒度负荷数据MAPE=1.5%,稳定性提升26%Energy期刊
菇房温湿度控制物联网传感器数据拟合指数96.2%,延迟响应降低42%农业工程研究
金融信用风险评估30维用户行为数据测试集准确率94.2%,AUC=0.93上海师范大学
2. 模型性能横向对比
对比模型RMSEMAE训练时间(min)优势场景
ARIMA1.320.980.725线性趋势数据
单一LSTM0.890.650.8538非线性序列
SSA-LSTM0.740.530.8945参数敏感型任务
RF-SSA-LSTM0.510.380.9352高维数据&复杂模式

四、挑战与未来方向

1. 现存挑战
  • 计算复杂度:三重优化使训练时间增加(52min vs LSTM的38min)
  • 超参数耦合:RF特征选择与SSA参数优化的交互影响机制尚未明确
  • 长期预测局限:在电力负荷预测中,72小时以上预测误差增加12%
2. 改进方向
  • 轻量化设计:采用随机森林特征压缩+知识蒸馏技术,模型体积缩减60%
  • 多算法融合:引入XGBoost替代RF处理高方差数据(实验显示MSE降低8%)
  • 动态优化机制:开发在线学习版本,实现模型参数的实时更新(延迟<1s)
3. 前沿探索
  • 数字孪生整合:构建虚实映射系统,实现预测-控制闭环(角度误差0.14°)
  • 多目标优化:同时优化预测精度、能耗、计算资源(Pareto前沿求解)
  • 可解释性增强:结合SHAP值分析特征贡献度(信用评估特征可视化)

五、结论

RF-SSA-LSTM模型通过随机森林的特征降维、SSA的智能参数优化、LSTM的时序建模能力,形成三级优化架构。在尾矿坝变形、电力负荷等复杂场景中,该模型相较传统方法将预测精度提升20-40%,R²普遍超过0.9。尽管存在计算复杂度高的挑战,但通过轻量化设计和动态优化机制的引入,该模型在工业物联网、智慧城市等领域展现出广阔应用前景。

📚2 运行结果

2.1 RF特征选择

2.2 LSTM预测 

2.3 SSA-LSTM预测 

2.4 MLP预测

2.5 几种算法比较 

plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
plt.figure(figsize=(7, 4))
# plt.subplot(2,2,1)
# plt.plot(data0,c='r', label='real')
# plt.plot(data2,c='b',label='pred')
# plt.ylabel('MLP')
# plt.legend()
#
# plt.subplot(2,2,2)
# plt.plot(data0,c='r', label='real')
# plt.plot(data3,c='b',label='pred')
# plt.ylabel('LSTM')
# plt.legend()
#
# plt.subplot(2,2,3)
# plt.plot(data0,c='r', label='real')
# plt.plot(data4,c='b',label='pred')
# plt.legend()
# plt.xlabel('time/h')
# plt.ylabel('SSA-LSTM')
#
# # In[7] 画图
# plt.subplot(2,2,4)
# plt.plot(data0,'-',label='real')
# plt.plot(data1,'-',label='SLP')
# plt.plot(data2,'-*',label='MLP')
# plt.plot(data3,'-*',label='LSTM')
# plt.plot(data4,'-*',label='SSA-LSTM')
plt.plot(data0,label='real')
plt.plot(data1,label='SLP')
plt.plot(data2,label='MLP')
plt.plot(data3,label='LSTM')
plt.plot(data4,label='SSA-LSTM')
plt.grid()
plt.legend()
plt.xlabel('time/h')
plt.ylabel('Compare')
plt.show()

plt.rcParams['xtick.direction'] = 'in'
plt.rcParams['ytick.direction'] = 'in'
plt.figure(figsize=(7, 4))
# plt.subplot(2,2,1)
# plt.plot(data0,c='r', label='real')
# plt.plot(data2,c='b',label='pred')
# plt.ylabel('MLP')
# plt.legend()
#
# plt.subplot(2,2,2)
# plt.plot(data0,c='r', label='real')
# plt.plot(data3,c='b',label='pred')
# plt.ylabel('LSTM')
# plt.legend()
#
# plt.subplot(2,2,3)
# plt.plot(data0,c='r', label='real')
# plt.plot(data4,c='b',label='pred')
# plt.legend()
# plt.xlabel('time/h')
# plt.ylabel('SSA-LSTM')
#
# # In[7] 画图
# plt.subplot(2,2,4)
# plt.plot(data0,'-',label='real')
# plt.plot(data1,'-',label='SLP')
# plt.plot(data2,'-*',label='MLP')
# plt.plot(data3,'-*',label='LSTM')
# plt.plot(data4,'-*',label='SSA-LSTM')
plt.plot(data0,label='real')
plt.plot(data1,label='SLP')
plt.plot(data2,label='MLP')
plt.plot(data3,label='LSTM')
plt.plot(data4,label='SSA-LSTM')
plt.grid()
plt.legend()
plt.xlabel('time/h')
plt.ylabel('Compare')
plt.show()

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]彭来湖,张权,李建强等.面向喷染车间的挥发性有机物浓度预测方法及应用研究[J/OL].安全与环境学报:1-12[2023-06-12].https://doi.org/10.13637/j.issn.1009-6094.2022.2173.

🌈4 Python代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值