💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
基于改进粒子群算法的含碳捕集微网多时间尺度低碳经济调度研究
一、改进粒子群算法(PSO)的核心原理与优化策略
-
标准PSO算法基础
粒子群算法模拟鸟群觅食行为,通过个体与群体经验的动态调整实现全局优化。每个粒子根据自身历史最优(pbestpbest)和群体历史最优(gbestgbest)更新速度和位置,公式为:其中,ω为惯性权重,c1、c2为学习因子,分别控制个体认知和社会协作能力。
-
改进策略
- 动态惯性权重:通过调整ωω平衡全局与局部搜索能力。例如,在迭代初期采用较大的ωω增强全局探索,后期减小以加速收敛。
- 变异操作:引入随机扰动(如重新初始化部分粒子),避免陷入局部最优。
- 多目标优化:结合帕累托前沿解,解决经济性与低碳性之间的冲突,例如在微网调度中同时优化运行成本与碳排放量。
-
在微网调度中的优势
- 高效并行搜索:适用于多变量、非线性约束的调度问题,如风光柴储协同出力优化。
- 灵活的参数调节:通过改进算法参数(如学习因子、变异概率)提升收敛速度与精度。
二、碳捕集微网的定义与核心组件
-
系统架构
碳捕集微网由电源侧(燃煤/燃气机组+CCS、风电/光伏)、储能单元(电池、储热罐)、负载侧(电动汽车、可调节负荷)及碳循环系统(P2G、CO₂储存)构成。- 碳捕集系统(CCS) :包括吸收塔、再生器、压缩机和溶剂储罐,可分离机组排放的CO₂,并通过P2G技术转化为甲烷循环利用。
- 灵活性运行模式:通过烟气旁路和溶剂储存实现能耗的时移,例如在负荷低谷期捕集更多CO₂,降低高峰期的运行压力。
- 碳捕集系统(CCS) :包括吸收塔、再生器、压缩机和溶剂储罐,可分离机组排放的CO₂,并通过P2G技术转化为甲烷循环利用。
-
低碳经济性机制
- 碳交易市场:通过碳配额交易将碳排放成本纳入调度目标,激励清洁能源消纳。
- 需求响应(DR) :协调电动汽车和柔性负荷,优化负荷曲线以减少碳排放。
三、多时间尺度调度模型的设计
-
时间层次划分
- 日前调度(24h,1h分辨率) :基于风光负荷预测,优化机组组合与储能充放电计划,以总成本最小化为目标。
- 日内滚动调度(15min间隔) :修正日前计划,应对预测误差,例如通过模型预测控制(MPC)实时调整碳捕集电厂的出力。
- 实时调整(5min级) :处理超短期波动,如风光功率突变,通过超级电容器快速响应。
-
优化目标与约束
- 目标函数:综合运行成本(购电、运维)、碳交易成本、弃风弃光惩罚成本。
- 约束条件:功率平衡、机组出力限值、储能充放电深度、碳捕集能耗与储存容量。
四、低碳经济调度的关键指标
-
核心指标
- 碳排放强度:单位发电量的CO₂排放量,需通过碳捕集与清洁能源消纳降低。
- 经济性指标:总成本包括燃料费、碳交易成本、设备折旧等。
- 可再生能源渗透率:风光发电占比,反映系统低碳化水平。
-
协同优化策略
- 源-荷-储协同:在负荷高峰时段,通过DR转移需求并启用储能,减少火电出力。
- 碳-能耦合:利用P2G将捕集的CO₂转化为甲烷,补充燃气机组燃料,降低外购气成本。
五、综合调度模型的构建方法
-
分阶段建模
- 日前阶段:以总成本最小为目标,确定机组出力、储能计划及碳捕集水平。
- 日内阶段:引入鲁棒优化处理风光预测误差,调整碳捕集电厂的溶剂储存策略。
- 实时阶段:采用MPC动态修正出力计划,确保功率平衡与低碳目标。
-
模型求解流程
- 多目标转化:将碳排放约束转化为碳交易成本,纳入单目标函数。
- 算法融合:改进PSO与灰狼算法(GWO)混合,提升全局搜索能力,避免局部最优。
- 仿真验证:通过MATLAB/Simulink平台验证模型有效性,对比传统PSO与混合算法的优化效果。
六、应用案例与效果分析
- 海岛微网优化
某远洋海岛群采用改进PSO-GWO算法,日均运行成本降低18.7%,可再生能源消纳率提升25%。 - 工业园区调度
四川某园区通过含P2G和CCS的多时间尺度模型,碳交易成本减少20.1%,系统稳定性显著提高。 - 对比分析
改进PSO相比传统算法,在收敛速度、帕累托解分布均匀性上表现更优,尤其在处理高维变量时优势明显。
七、未来研究方向
- 不确定性建模:进一步研究风光-负荷联合预测误差对多时间尺度调度的影响。
- 跨市场协同:探索碳交易与电力市场的联动机制,提升微网收益。
- 智能算法融合:结合深度学习预测与PSO优化,实现动态环境下的实时调度。
通过上述多维度整合,改进粒子群算法在碳捕集微网调度中展现出显著优势,为电力系统低碳转型提供了理论支撑与实践路径。
📚2 运行结果
部分代码:
%%%阶段一:优先安排清洁能源机组
PDD=[700,750,850,950,1000,1100,1150,1200,1300,1400,1450,1500,1400,1300,1200,1050,1000,1100,1200,1400,1300,1100,900,800];%负荷
[Pcd1,P_cH2]=P_Elect_config(x(1,73:120));%%SOC ->MW KCF
%%安排光伏
PL=PDD-pv;
%%安排MT、储能
PLD=PL-PMT+P_tanbu+P_dianjie-Pcd1;
if flag~=1
%%
%%阶段二,利用火电进行实时调度,考虑风电光伏的误差及备用容量
[Fobject,UC_G]=syst_optimal(PLD,25);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%气体平衡
%电解槽产生的H2
P_dianjie_H=P_dianjie.*0.75.*3.41./0.342;%(电_气综合能源系统环境经济调度研究_何良策 式中2-6)
%燃气轮机消耗的气体 (2-17)
% a=[1000];
% b=[16.19];
% c=[0.00048];
MT_gas=1000+16.16.*PMT+0.00048.*PMT.*PMT;
%%甲烷化的H2
Ch4_gas=(P_dianjie_H-P_cH2)/2;%%燃气轮机接在天然气管网,甲烷化的气体先于MT机组消耗的对冲,然后输入天然气管
%甲烷化消耗的CO2量化计算
CO2_gas=(P_dianjie_H-P_cH2)/2;
%%消耗的气量
%%消耗的气量
Gas_tol=sum(MT_gas-Ch4_gas.*1.05);
%CH4
ch4=Ch4_gas.*1.05;
%%计算成本
%运行成本
cost1=Fobject+Gas_tol.*2.47;
%%%%%%%%%%%%%%%%%%%%%%%%%%%CO2平衡
Pc_co2=P_tanbu.*3.25;%碳捕系统单位电量捕获的cO2系数为3.25
%%环境成本
% %火电机组排放及治理
% co2=sum(sum(UC_G,2)).*0.21-sum(Pc_co2)-sum(CO2_gas)-sum(PMT).*0.2;
% v_co2=max([0,co2]);%%看是否全部处理,如果全部处理,则可取0
% cost2=(v_co2.*8.5);%kg/元
% %%So2 0..80 氮 0.85
% %燃气轮机排放及治理
% % cost2=cost2+sum(PMT).*0.2*62.96;%kg/元
% cost3=sum(abs(PLD-sum(UC_G,2)'))-sum(P_tanbu)-sum(P_dianjie);%%弃DG量
% cost3_1=max([0,cost3]);
%%弃DG量
%%阶段三:日内滚动调度
%%设计场景:利用碳捕集系统去抑制风光波动,即当风光波动时,调整碳捕系统的出力。
%%滚动调度以每5分钟滚动一次
%01-模拟风光误差
P_tc_time=[];
for tt=1:24
%光伏波动
PV=pv(1,tt).*ones(1,12) *0.03;
%%碳捕出力扩展成5min
PP=repmat(P_tanbu(1,tt),1,12);
PP=PV+PP;
P_tc_time=[P_tc_time,PP];
end
%%重新计算碳捕的出力及费用
%%%%%%%%%%%%%%%%%%%%%%%%%%%CO2平衡
Pc_co2=P_tc_time.*3.25;%碳捕系统单位电量捕获的cO2系数为3.25
%%环境成本
%机组排放及治理
co2=sum(sum(UC_G,2)).*0.21-sum(Pc_co2)./12-sum(CO2_gas)-sum(PMT).*0.2;
% v_co2=max([0,co2]);%%看是否全部处理,如果全部处理,则可取0
%%----------------------计算碳排放权交易量------------------------
%%清洁能源+储能发电量+碳补系统处理的量+电解装置消耗的量
%%碳排放价格按照广州碳排放交易中心确定(45/吨)(http://www.cnemission.cn/article/jydt/)
%%碳排放指标参考(排放指标配额技术指南发改委)https://www.sohu.com/a/442954915_651733
% 燃气轮机:0.39t/MW;燃煤机组0.97t/MW
cost2=(-co2)*45./1000+sum(pv)*0.97*45./1000+sum(PMT).*0.39*45./1000;
%%So2 0..80 氮 0.85
%燃气轮机排放及治理
% cost2=cost2+sum(PMT).*0.2*62.96;%kg/元
cost3=sum(abs(PLD-sum(UC_G,2)'))-sum(P_tanbu)-sum(P_dianjie);%%弃DG量
cost3_1=max([0,cost3]);
Obj(1) = cost1+cost3_1*150;
Obj(2) =-cost2;
end
if flag==1
%%
%%阶段二,利用火电进行实时调度,考虑风电光伏的误差及备用容量
[Fobject,UC_G]=syst_optimal(PLD,25);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%气体平衡
%电解槽产生的H2
P_dianjie_H=P_dianjie.*0.75.*3.41./0.342;%(电_气综合能源系统环境经济调度研究_何良策 式中2-6)
%燃气轮机消耗的气体 (2-17)
% a=[1000];
% b=[16.19];
% c=[0.00048];
MT_gas=1000+16.16.*PMT+0.00048.*PMT.*PMT;
%%甲烷化的H2
Ch4_gas=(P_dianjie_H-P_cH2)/2;%%燃气轮机接在天然气管网,甲烷化的气体先于MT机组消耗的对冲,然后输入天然气管
%甲烷化消耗的CO2量化计算
CO2_gas=(P_dianjie_H-P_cH2)/2;
%%消耗的气量
%%消耗的气量
Gas_tol=sum(MT_gas-Ch4_gas.*1.05);
%CH4
ch4=Ch4_gas.*1.05;
%%计算成本
%运行成本
cost1=Fobject+Gas_tol.*2.47;
%%%%%%%%%%%%%%%%%%%%%%%%%%%CO2平衡
Pc_co2=P_tanbu.*3.25;%碳捕系统单位电量捕获的cO2系数为3.25
%%弃DG量
%%阶段三:日内滚动调度
%%设计场景:利用碳捕集系统去抑制风光波动,即当风光波动时,调整碳捕系统的出力。
%%滚动调度以每5分钟滚动一次
%01-模拟风光误差
P_tc_time=[];PVV=[];PV1=[];
for tt=1:24
%风电光伏波动
PV=pv(1,tt).*ones(1,12) *0.03;
%%碳捕出力扩展成5min
PP=repmat(P_tanbu(1,tt),1,12);
PP=PV+PP;
P_tc_time=[P_tc_time,PP];
PVV=[PVV,repmat(pv(1,tt),1,12)*1.03;];
PV1=[PV1,repmat(pv(1,tt),1,12)];
end
%%重新计算碳捕的出力及费用
%%%%%%%%%%%%%%%%%%%%%%%%%%%CO2平衡
Pc_co21=P_tc_time.*3.25;%碳捕系统单位电量捕获的cO2系数为3.25
%%环境成本
%机组排放及治理
co2=sum(sum(UC_G,2)).*0.21-sum(Pc_co21)./12-sum(CO2_gas)-sum(PMT).*0.2;
% v_co2=max([0,co2]);%%看是否全部处理,如果全部处理,则可取0
%%----------------------计算碳排放权交易量------------------------
%%清洁能源+储能发电量+碳补系统处理的量+电解装置消耗的量
%%碳排放价格按照广州碳排放交易中心确定(45/吨)(http://www.cnemission.cn/article/jydt/)
%%碳排放指标参考(排放指标配额技术指南发改委)https://www.sohu.com/a/442954915_651733
% 燃气轮机:0.39t/MW;燃煤机组0.97t/MW
cost2=(-co2)*45./1000+sum(pv)*0.97*45./1000+sum(PMT).*0.39*45./1000;
%%So2 0..80 氮 0.85
%燃气轮机排放及治理
% cost2=cost2+sum(PMT).*0.2*62.96;%kg/元
cost3=sum(abs(PLD-sum(UC_G,2)'))-sum(P_tanbu)-sum(P_dianjie);%%弃DG量
cost3_1=max([0,cost3]);
%%输出图像
figure;%风光
plot(1:24,pv,'b-o','LineWidth',2);hold on
tt=24/288:24/288:24;
plot(tt,PVV,'k--o');hold off
ylabel('功率/MW'); xlabel('时间/T');
legend('日前光伏','实时光伏')
figure;
bar(sum(UC_G,2));hold on%火电机组
bar(pv)
bar(PMT)
bar(Pcd1)%
plot(1:24,PDD,'k-->','LineWidth',2);
ylabel('功率/MW'); xlabel('时间/T');
legend('火电机组','光伏','燃气轮机','储能','负荷');
title('电负荷平衡')
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]陈敬峰.含混合储能的独立型微电网系统控制与优化调度策略研究[D].华南理工大学[2024-04-24].
[2]程杉,黄天力,魏荣宗.含冰蓄冷空调的冷热电联供型微网多时间尺度优化调度[J].电力系统自动化, 2019(5):11.DOI:CNKI:SUN:DLXT.0.2019-05-005.
[3]黄天力.计及广义备用容量的微网多时间尺度能量优化调度[J].电力学报, 2022, 37(5):441-449.