基于蒙特卡诺的风、光模型出力(包含Matlab代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于蒙特卡洛方法的风光出力模型研究

一、蒙特卡洛方法的核心原理与能源系统建模

二、风电出力预测模型与蒙特卡洛的融合方法

1. 关键参数建模

2. 蒙特卡洛应用策略

三、光伏出力预测模型与蒙特卡洛的协同优化

1. 关键参数建模

2. 蒙特卡洛创新应用

四、风光互补系统建模的蒙特卡洛整合方法论

1. 多能耦合建模框架

2. 典型系统案例分析

五、实践应用与前沿技术

1. 场景生成技术

2. 软件工具与代码实现

六、挑战与未来方向

结论

📚2 运行结果

光照强度分布特性

光伏DG有功出力 

风速分布特性

风电 DG有功出力

🎉3 参考文献 

🌈4 Matlab代码、数据下载


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于蒙特卡洛方法的风光出力模型研究

一、蒙特卡洛方法的核心原理与能源系统建模

蒙特卡洛方法是一种基于概率统计的随机模拟技术,其核心是通过大量随机采样逼近复杂系统的统计特性。在能源系统建模中,该方法通过以下步骤实现风光出力不确定性建模:

  1. 概率模型构建:将风速、光照强度等关键参数建模为随机变量(如Weibull分布、Beta分布)。
  2. 随机样本生成:通过抽样算法(如拉丁超立方抽样、马尔可夫链蒙特卡洛)生成大量可能的风光出力场景。
  3. 场景性能评估:将样本输入系统模型(如潮流计算、经济调度),计算可靠性指标(如LOLE、ENS)或经济指标(如运行成本)。
  4. 统计结果分析:通过大数定律收敛到系统行为的概率分布,量化不确定性影响。

数学表达示例


二、风电出力预测模型与蒙特卡洛的融合方法
1. 关键参数建模
  • 风速概率分布:采用Weibull分布描述风速随机性,概率密度函数为:

    其中k为形状参数(反映风速波动性),c为尺度参数(反映平均风速)。
  • 风机出力分段模型

2. 蒙特卡洛应用策略
  • 场景生成:基于Weibull分布生成风速序列,转化为出力场景,用于评估风电并网对系统可靠性的影响。
  • 多状态模型:考虑机组故障、降额等状态,构建风电机组多状态可靠性模型,结合蒙特卡洛模拟计算容量可信度(ELCC)。
  • 时序相关性处理:采用ARMA模型捕捉风速时间序列的自相关性:

    其中ϵt为白噪声,提升出力预测的时间分辨率。

案例:某风电场通过蒙特卡洛模拟生成10,000组风速样本,结合ARMA模型预测出力,结果显示形状参数kk增加0.2可使EENS(预期未供电量)降低12%。


三、光伏出力预测模型与蒙特卡洛的协同优化
1. 关键参数建模
  • 辐照度与温度影响:光伏出力PPVPPV​与辐照度II呈线性关系,与环境温度TT负相关:

    其中γ为温度系数,STC为标准测试条件。

  • 天气分型:通过聚类(如k-means)或相似日选择(GRA分析),划分不同天气类型下的出力特征。
2. 蒙特卡洛创新应用
  • Copula函数联合分布:采用高斯Copula或t-Copula建模辐照度-温度-风速的联合分布,生成相关性保持的光伏出力场景。
  • 概率区间预测:基于NGBoost算法生成分位数预测,结合蒙特卡洛抽样修正预测偏差,提高置信区间覆盖率至95%以上。
  • 动态参数优化:利用贝叶斯优化(如TPE算法)调整LSTM超参数,降低RMSE至3.2%。

案例:某光伏电站采用Copula-Monte Carlo方法生成出力场景,相比传统正态分布假设,区间覆盖率(PICP)从89%提升至94%,平均宽度(PINAW)缩小15%。


四、风光互补系统建模的蒙特卡洛整合方法论
1. 多能耦合建模框架
  • 能源集线器模型:构建电-气-热耦合方程,通过马尔可夫过程蒙特卡洛模拟设备状态转移,评估多能流协调可靠性。

  • 场景生成与削减
    • 生成:基于Weibull(风电)和Beta(光伏)分布生成初始场景。
    • 削减:采用改进K-means或前代缩减法,将场景数从1000削减至5-10个典型场景,保留95%概率信息。
  • 经济-环境多目标优化:以运行成本最低和碳排放最小为目标,构建双层随机规划模型,通过蒙特卡洛模拟评估Pareto前沿。
2. 典型系统案例分析
  • 杭州医药港多能互补系统:集成光伏、钒液流储能和冷热电联供,蒙特卡洛模拟显示系统一次能源利用率超过80%,投资回收期缩短至4.4年。

  • 电-气-热综合系统:通过蒙特卡洛评估风光波动性,配置30%储能容量后,LOLE(负荷损失期望)从5.2小时/年降至1.8小时/年。

五、实践应用与前沿技术
1. 场景生成技术
  • 改进扩散模型:结合去噪扩散概率模型(DDPM)生成高分辨率出力曲线,相比传统MCS方法,KL散度降低40%。
  • 多链MCMC算法:针对风光出力时空相关性,采用多链马尔可夫链提升采样效率,自相关系数误差小于0.05。
2. 软件工具与代码实现
  • Matlab工具箱:基于Weibull/Beta分布生成风光场景,调用kmedoids函数进行场景削减,代码开源。
  • Python框架:利用PyMC3实现贝叶斯LSTM参数优化,集成Copula库构建联合分布模型。

六、挑战与未来方向
  1. 高维相关性建模:风光-负荷-储能的多元非线性依赖关系仍需更精确的Copula或深度学习模型。
  2. 计算效率优化:量子蒙特卡洛和分布式采样技术可缩短大规模系统仿真时间。
  3. 极端天气适应性:融合气候模式输出(如CMIP6数据),提升蒙特卡洛在极端事件下的鲁棒性。

结论

蒙特卡洛方法通过随机采样与概率建模,有效量化了风光出力的不确定性,其在多能互补系统规划、市场交易策略优化等领域展现出强大潜力。未来需进一步结合AI算法与高性能计算,实现更精细化的能源系统风险管控。

📚2 运行结果

光照强度分布特性

光伏发电机组产生的有功功率通常取决于光伏发电机组所在位置的光强。为了获得更精确的概率分布特性,采用有效的方法对测量的光强数据进行拟合是非常重要的。

                   

上图为某光伏电站全年7:00-18:00实测光照强度数据,从图中可以看出风速的确存在一定的分布特性,所以本文采用Beta分布,Normal分布,同实测光照强度数据进行拟合。

(1)Beta分布

概率密度函数:

                     

式中:r为光照强度(W /m^{2})\tau ()为Gamma函数,r_{max}为最大光照强度,\alpha\beta为Beta分布的参数。参数的确定由实际数据进行拟合得到。

( 2)Normal分布

概率密度函数:

                       

 式中: r为光照强度(W/m^{2})\sigma\mu为 Normal分布的参数。参数的确定由实际数据进行拟合得到。 

光伏DG有功出力 

光伏功率 = Beta分布 * 最大光强 * 组件总面积 * 光电转换率

                         P_{s}=f(\frac{r}{r_{max}})\cdot r_{max}\cdot S\cdot \eta

% 光伏有功出力样本
        pv_samp(1,:)=betarnd(a_pv,b_pv,1,times);%生成形状为(1,times,),参数为a_pv,b_pv的Beta分布
        Ppv_samp(1,:)=pv_samp(1,:)*rmax*S_pv*prey_pv;% 光伏功率=Beta分布*最大光强*组件总面积*光电转换率

风速分布特性

风电机组发出的有功功率与机组所在位置的风速大小。针对实测的风速数据用有效的方法去拟合来获得较为精确的概率分布特性,意义显得尤为重要。

            

上图为风力发电站的年实测风速数据。从图中可以看出,风速具有一定的分布特征:偏态分布。本文采用Weibull分布、Rayleigh分布和Gamma分布对实测风速数据进行拟合。 

(1)Gamma分布

概率密度函数:

                

式中: \nu为风速(m/s),\tau ()为Gamma 函数,α、β为Gamma分布的参数。参数的确定由实际数据进行拟合得到。
本文采用Gamma分布,当然也可以换成下面两个分布。

wt_samp =gamrnd(c_wt,k_wt,1,times);  % 风速 产生服从gammer分布的样本 ,形状为((1,times,)
%wt_samp =wblrnd(c_wt,k_wt,1,times);  % 风速 可以修改为服从weibull分布的样本 ,形状为((1,times,)

(2)Rayleigh分布

概率密度函数:

                       
式中:\nu为风速(m/s),\sigma为 Rayleigh分布的参数。参数的确定由实际数据进行拟合得到。
Rayleigh分布属于weibull分布的一个特例,通常适用于长时间(一年)及其以上风速统计数据,拟合的结果与实际的结果有10%的误差。

(3)Weibull分布

概率密度函数:

                

式中:\nu为风速(m/s),\lambdak为 Weibull,分布的两个参数。参数的确定由实际数据进行拟合得到。
weibull分布应用广泛,形式简单,计算简单,但其缺点是不能适应某些地区极端天气的风速分布。


风电 DG有功出力

在得到风速模型后,需要得到风力机出力和风速的公式:

                 

式中:\nu为风速,\nu _{ci}为切入风速,\nu _{co}为切出风速,\nu _{r},为风电机组额定风速,P_{r}为风电机组的额定输出功率。
 

             

运行结果:

 

部分代码:

 %% 风机出力
    for i=1:times  %得到风电出力样本
        if wt_samp(i)<vci %如果风速小于切入风速
            Pwt_samp(i)=0; %风机功率为0
        end 
        if wt_samp(i)>vci&&wt_samp(i)<vN %如果风速大于切入风速,同时小于额定风速
            Pwt_samp(i)=(wt_samp(i)-vci)/(vN-vci)*PN_wt;
            if   Pwt_samp(i)>PN_wt %如果风电功率大于额定功率
                Pwt_samp(i)=PN_wt; %则风电功率等于额定功率
            end 
        end
        if wt_samp(i)>vN&&wt_samp(i)< vco %如果风速大于额定风速 同时小于切出风速
            Pwt_samp(i)=PN_wt;%风电功率等于额定功率
        end 
        if wt_samp(i)> vco %如果风速大于切出风速
            Pwt_samp(i)=0;%风电功率等于0
        end
    end               

🎉3 参考文献 

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈Matlab代码、数据下载

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值