张量
文章平均质量分 68
往797
这个作者很懒,什么都没留下…
展开
-
11.The Metric Tensor
Metric Tensor--度量张量度量张量可以测量空间的长度和角度。原创 2023-10-18 22:12:05 · 167 阅读 · 0 评论 -
18.Raising and Lower Indexs
两向量点乘是把对应位置的分量相乘再求和, 得到一个实数, 实数怎么是协向量(长得跟行向量一样)?而新方法,其变化时, 系数的变化是一致的。这种升高和降低操作不仅适用于向量和协向量分量,也可升高和降低其他张量分量的索引,首先,若横线是输入向量,毫无疑问是输出数,那就是一个从V到R的函数。熟悉,一个是向量所在的空间,一个是协向量所在的 对偶空间 ,, 就是利用度量张量(协变度量张量,因其分量是协变的),将。用一个向量v点乘另一个向量, 得到一个协向量?从左往右可以通过度量张量g , 而 从右往左呢?原创 2023-10-23 19:49:58 · 182 阅读 · 0 评论 -
17.Tensor Product Spaces
同样,本文仍采用非标准 的符号。在之前的文章里,已经展示了: 使用张量积将向量和协向量组合在一起可以为我们提供线性映射,这个线性映射的系数实际上只是一个数组的条目。还展示了:使用张量积组合两个协向量,可以得到一个双线性形式,该双线性形式的系数实际上只是与这些协向量关联的两个行向量的Kronecker 积 给出的数组的条目。原创 2023-10-22 15:58:17 · 244 阅读 · 0 评论 -
16.The Tensor Product:Vector/Covector combinations
但不幸的是,对于较大的张量,如前面的Q和D,具有高阶数(high type numbers),有几种可能的乘法规则,正如我们之前讨论的那样,因此,没有简单的方法来进行数组乘法来保证给我们 我们想要的答案,。需要说明的一点是, 随着张量越来越大,协变和逆变部分越来越多,我们最终会得到越来越多的求和方法以及越来越多的方法计算函数。处理高阶张量的张量乘法时,可将张量抽象地写出来,或者写成数组,通常最好用爱因斯坦分量符号写出来,因为它使得求和规则非常明显。(2,0)阶张量, 由两个向量生成的。原创 2023-10-21 22:27:21 · 379 阅读 · 0 评论 -
15.Tensor Product vs. Kronecker Product
这两个积基本上是在做同样的事情,只是张量积结合了代数符号领域的抽象向量和抽象协向量,而Kroneck 积 结合了向量数组 和 数组领域中的协向量数组。本文讨论的是:“张量积”,它是对张量的运算;该乘积将采用这两个数组(在这种情况下恰好是一个列向量和一个行向量),它将产生第三个数组。所以,实际上,张量积和Kroneck积有点像同一个运算,它们只是在不同的上下文中做工作,因此,它通过获得左侧的第一个数组,并将其分配给右侧数组中的每个元素来实现这一点。协向量是由这里的这些规则定义的线性函数,其中协向量。原创 2023-10-21 16:36:08 · 256 阅读 · 0 评论 -
14.Tensor Product:Covector-Covector Pairs
对线性映射,对下图左侧的列向量和右侧的行向量进行循环时间运算,但对于双线性形式,由于我们处理的是协向量-协向量对,我们将使用两个行向量代替,再次的,将左边的数组分配给右边数组的每个元素,最终我们得到的是一行行(a row of rows)使用的那个符号是 循环时间符号, 这个圆形时间符号 告诉 我们要做的是 : 获取左侧的数组,并将其分配给右侧数组的每一个组件。这里有个公式,即使有两个向量输入,也需将一个写成列,一个写成翻转的行,以使乘法工作能正常运行。左边的将是本文使用的 , 右边的是标准。原创 2023-10-21 15:49:39 · 128 阅读 · 0 评论 -
13.Tensor Product:Vector - Covector Pairs
(矩阵列告诉我们每个基向量副本的去向,当它通过线性映射时,如果所有矩阵列都是彼此的倍数,。这意味着通过线性映射的所有可能的矢量输入都被 发送到相同的方向, 这就是纯矩阵不太有趣的原因,它们可以做的转换集有限)但非纯矩阵是更有趣的矩阵,它们可以将基向量发送到不同的方向,因此我们可以获得更有趣的转换。需要注意的是:本文的一些内容使用的是非国际标准的符号,只是视频制作人的个人偏好。定义四个特殊的向量-协向量对,使用旧基ei,和旧对偶基εi ,而究其原因:对于纯矩阵,矩阵的列向量 都是彼此的标量倍数,原创 2023-10-20 21:31:17 · 315 阅读 · 0 评论 -
12.Bilinear Forms
可以看出,度量张量中输入向量的顺序无关,因此,使用度量张量,可在 不更改任何内容的情况下交换输入, 但我们不一定能用双线性形式做到这一点,。当说B是双线性时,这是因为它是一种形式,其中每个单独的输入都是线性的,而另一个输入保持不变。2. 度量张量测量向量长度时,我们将相同的向量放入两次,我们总是得到>=0的结果,事实上,度量张量具有 其他双线性形式 可能没有的两个额外的属性,所以,某些双线性形式是有效的度量张量,而另一些不是。所以,双线性形式的一些例子可能是有效的度量张量,但是,它们实际上并不相同,原创 2023-10-19 21:42:26 · 134 阅读 · 0 评论 -
10.Linear Map transformation rules
如果把这些在旧基上表示的分量 应用反向变换,可以得到其在新基中的分量,并注意,使用的是反向转换(Backward),因为向量分量是逆变的(contravariant)观察一下, 发现这些求和的字母符号,有一定规律,其实是可以假装那个求和符号是透明的。--------这个无法用L所表示的矩阵。-------------------------------由一个矩阵给出的线性映射在这,并且是在基底e上表示,在此,可能会问,新基中输出的向量的分量是多少?假设有个向量V,其分量是【1,1】,所以L(V)的分量是。原创 2023-10-16 22:28:26 · 462 阅读 · 0 评论 -
9.Linear Maps
列向量是向量的坐标表示。行向量是协向量的坐标表示。矩阵是线性映射的坐标表示。矩阵是如何转变向量的?例子现有一个作用于2x1列向量的2x2矩阵,输出的向量是?但仅通过查看矩阵中的数字来理解矩阵在做什么会让人感到困惑。但对所有这些数字的含义,有一个简单的解释:注意,若使用列向量作为输入,将得到矩阵的第一列作为输出。若使用列向量作为输入, 将得到矩阵的第二列作为输出。现这些列向量, 它们有点像基向量e1、e2的副本之所以说是像副本,是因为这里非常重要的一点:线性映射转换向量。原创 2023-10-14 23:03:40 · 1001 阅读 · 0 评论 -
8.Covector Transformation Rules
上一节已知,任意的协向量都可以写成对偶基向量的线性组合,以及如何通过计算基向量穿过的协向量线来获得协向量分量,且看到 协向量分量 以 与向量分量 相反的方式进行变换。得到的最后一个式子,最后一个式子的左边就是一个单位阵E,即右边两个东西互逆,而F与B又是互逆的,等量代换,。现在,就可以明白为什么视频的老师 把协向量的索引 写在顶部, 因为它们的变换与基向量的方式相反。注意,是以向量那个为本,其他的转换方式都与向量的来进行比较, 反就弄上标,同就下标。以便可根据新的基向量写出旧的基向量。原创 2023-10-14 18:58:45 · 561 阅读 · 0 评论 -
7.Tensors For Beginneers - Convector Components
协向量是 一个 从向量到实数的函数,协向量并不存在向量空间V中,协向量只是将V中的向量作为输入,所以我们不能使用V中的基向量来构造协向量,假设有一个协向量α,一簇在e1、e2为基底的向量空间的线, 可通过把α应用到基底e1、e2上来获得α的组件,只需计算穿透的行数,协向量中:某个协向量的转换:利用旧基到利用新基---用F,利用新基到利用旧基--用B。你看上图, 对于利用正交基, 协向量你把它从列向量转置成行向量,2,1仍是2,1;但是协向量分量是通过计算 基向量 穿过的协向量线的数量来测量的。原创 2023-10-06 17:10:54 · 106 阅读 · 0 评论 -
6.Tensors For Beginners-What are Convector
在一定程度上,可认为 协向量就像 行向量。但简单地认为 这就是列向量进行转置!要理解这个,需将 行向量视为函数,因此,可将行向量 视为 列向量上的函数,row vectors are functions on (column) vectorseg:y=f(x) x就是输入行向量 [ 2,1 ]是函数,列向量 [ -3;4 ]是函数的输入,要得到函数的输出值,只需对该行向量和列向量进行矩阵乘法 或“点积”现如果,有 任意通用的协向量α 作用于 任意通用向量v上,原创 2023-10-05 22:03:33 · 1001 阅读 · 0 评论 -
5.Vectors Transformation Rules
当向量分量的行为方式 与 基向量的行为 相反 时,当基变大时,这是 完全有意义的。基向量的索引是在右下角, 向量组件的索引在右上角,在某种程度上提醒了它们的行为方式相反。它们两个 做了相反的事, 基向量放大, 某向量的向量组件缩小。注意哦,把系数的i放到右上角, 其仍然是索引值,表示第 i 个,而不是 指数。基向量放大了两倍, 但对于向量v ,其向量组件缩小了两倍。当使用新的基向量测量V时,V看起来更小,因为基向量变大了两倍。证明 :(当然也是针对向量,旧基、新基的行为,组件的行为)原创 2023-10-04 22:00:00 · 1311 阅读 · 0 评论 -
4.Tensors For Beginners-Vector Definition
这很简洁,也通俗易懂。现有两个向量:如果要把这两个向量给加起来,只需把对应位置的元素(组件)给加起来。而要缩放向量,则可以通过缩放常数的方式来实现。通过这样的方式定义向量很简单,但是存在问题,这些数字列表实际上是 向量组件,而不是向量本身。向量本身 ≠ 向量组件!!!不要把二者混淆把它当作一列数字就会错失向量背后的几何意义向量是具有几何意义的几何对象空间中的箭头像定义1中, 也可以把两个向量进行相加,只要进行首尾相接也可以进行缩放。原创 2023-10-04 16:36:08 · 131 阅读 · 0 评论 -
3.Tensors For Beginners- Forward and Backward Transformations
观察上面最底下的这个式子, 其不就是在用 n个旧基向量的求和 来 构建一个 旧基向量吗,之前说过,张量在坐标系变化下是不变的,故了解如何在坐标系之间来回移动对理解张量很重要。当然是 k==i 时,中间那部分就为1, 当 k ≠ i 时,中间那块为0.知道这个矩阵B后,就知道如何进行后向转换了,如何从新基转移到旧基。--------------利用旧基向量 构建 新基向量。用新基的所有向量的线性组合来表示 旧基中的任一向量。一个新基 由 旧基中的所有向量的线性组合表示。这是在二维坐标系下的两组基。原创 2023-10-03 21:44:04 · 187 阅读 · 0 评论 -
2.Tensor For Beginner -Tensor Definition
张量是一个在变化的坐标下“不变”的对象,并且具有在变化的坐标下 以“特定的可预测方式”变化的组件。拿起一支笔,让笔指向离你最近的门。铅笔的长度不会取决于我们选择的坐标系。长度是“固有”的或者是“不变”量;这支铅笔也指向门,这是事实,它不取决于我们使用什么坐标系,铅笔的方向在坐标系的选择下是 “固有的”或“不变的“。首先,假设这有个xyz三维坐标系,我们可以利用该坐标系来测量铅笔,可以看出,该铅笔由2个黄色箭头,1个绿色箭头,2个蓝色箭头组成。原创 2023-10-02 21:36:55 · 105 阅读 · 0 评论 -
1.Tensor For Beginner - Motivation
事实证明,在量子力学中,物理状态、物理量子状态 实际上只是向量,因此,可以使用线性组合的方式将更简单的状态组合一起,从而为我们提供更复杂的状态。这就是所有的量子叠加。量子纠缠:两粒子即使被分离数千公里,它们都能用一种奇特的方式相互影响,使用这种奇特的量子纠缠特性连接起来。时空是如何弯曲的,宇宙是如何膨胀的。几何的一个例子:爱因斯坦广义相对论中的时空几何。而叠加只是 “线性组合”的一种花哨的说法。量子叠加:量子系统可以同时处于两种状态。了解张量后,可深入了解几何的工作原理。--主要原因是几何。原创 2023-10-02 16:26:10 · 106 阅读 · 0 评论