5.Vectors Transformation Rules

在上节,有个问题:向量分量的转换方式 与 新旧基底的转换方式相反

用例子来感受一下,

空间中一向量V,即该空间的一个基底:e1、e2

v = e1 + e2

现把基底 e1 、 e2 放大两倍。变成 \tilde e_{1} , \tilde e_{2}

\tilde e_{1} = 2 e_{1}, \tilde e_{2}= 2 e_{2}

基向量放大了两倍, 但对于向量v  ,其向量组件缩小了两倍。
它们两个 做了相反的事, 基向量放大,  某向量的向量组件缩小。  但V是不变的。

当使用新的基向量测量V时,V看起来更小,因为基向量变大了两倍

另一个例子:
旧基底:e1 、 e2 ; 新基底:\tilde e_{1} , \tilde e_{2}。 

向量V

V 由大约相等的部分 e1 、e2组成, 且V与e1、e2的夹角大致相等。 意味着每个方向上的组件大致相同;

现顺时针选择这对基底, 使得V与\tilde e_{1}的夹角  大于 V与\tilde e_{2}的夹角。   V不变

但V现在与\tilde e_{1}相比,V更接近\tilde e_{2} ,  这时,组件做了相反的事,V = x\tilde e_{1} +y\tilde e_{2}

x肯定是 < y 的

回到上节最后那部分的内容,

当向量分量的行为方式  与 基向量的行为  相反 时,当基变大时,这是 完全有意义的。

意义:当基变大时,分量会缩小; 当基底向一个方向旋转时,组件 会向另一个方向旋转。

无论基底做什么,组件都会做 相反 的事。

通过这两个例子, 就能对2D中会发生这种相反的行为有了一定直觉。

那是否是在任何维度都如此呢?

证明 :(当然也是针对向量,旧基、新基的行为,组件的行为)

利用这个,以及之前的前向变换和后向变换。

代入,化简

以上就证明了,为从 旧组件 转移到 新组件, 我们实际上是 使用了  后向转换(Backward)

类似的,从新组件 转移到旧组件, 使用 向前转换(Forward)

现在因为向量分量的行为  与  基向量相反,

我们说 向量分量 是 Contra-variant

(向量是 逆变张量  vectors are contravariant tensors)

规定:

 上述形式,改为:

这里向量V 已经被我们用 新基的线性组合或者旧基的线性组合写出,

但这些向量组件,因为它们是 CONTRA-variant。

我们将在编写方式上做点  改变,

把组件(v_{i}, \tilde v_{i})的索引i写到字母v右上方  v^{i} , \tilde v^{i}

通过写在右上角,提醒 我们 组件是逆变的。

注意哦,把系数的i放到右上角, 其仍然是索引值,表示第 i 个,而不是 指数

基向量的索引是在右下角, 向量组件的索引在右上角,在某种程度上提醒了它们的行为方式相反

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值