18.Raising and Lower Indexs

本文讨论了如何在向量空间V中通过度量张量实现向量与协向量的对应关系,介绍了利用基底和度量张量进行升高/降低索引操作以处理协变和逆变分量的方法。特别强调了在特殊情况下,向量与其伙伴协向量的表示和转换规则。
摘要由CSDN通过智能技术生成

提高和降低张量索引

同样,使用的是非标准的符号。

我们对V和V^{*}熟悉,一个是向量所在的空间,一个是协向量所在的 对偶空间 , 
有一个问题:
有何办法能在V的向量与V^{*} 的协向量之间 建立对应的关系?
换句话说, 有何方法可以让我们在V中获取一个向量 并在V^{*} 中找到它的“伙伴”(partner)?

首先尝试的方法是利用基底,(但是该方法不行)

会存在问题。

原因: 考虑改变基底的情况, 

问题在于,虽然基向量是协变的,
所以当我们从旧基转到新基时,
我们使用正向变换来变换基向量,
而基协向量是逆变的,
因此,
从新基 转换到旧基 , 
使用的是反向变换来转,

这个系数匹配就不好,不是相同的。

尝试方法2:

用一个向量v点乘另一个向量,  得到一个协向量?????
v·v   = 协向量? 两向量点乘是把对应位置的分量相乘再求和, 得到一个实数, 实数怎么是协向量(长得跟行向量一样)??

事实证明,确实是

首先,若横线是输入向量,毫无疑问是输出数,那就是一个从V到R的函数。

但是V^{*}的成员不能只是从向量到标量的任何旧函数,  它们还必须是线性的,
所以,需要利用点积的性质,证明该函数是线性的,。

上图左侧就证明了 v\cdot__  是线性的, 这意味着 它确实是 V^{*}的成员 , 所以 v\cdot__ 真的是个协向量。
??????????????????????????不明所以

难道是: 协向量是像个行向量一样, 协向量 ·  向量  = 实数, 且服从缩放、加法规则。

上图左侧是  协向量的使用,  右侧是 v\cdot__  的使用,  它们在使用上是一样的。

原来使用基底的方法,  无法实现变化时只改变向量或协向量, 系数的变换不一致;

而新方法,其变化时, 系数的变化是一致的。向量及其协向量伙伴将始终以相同的量增大或缩小。

既然有这种归属关系,那么我们就能将该协向量 用对偶基的线性组合来表示。

x究竟是多少????

要弄清楚x,
回顾之前的内容:
v·w是通过向量 传递给 度量张量“g” 来给出的。

(因为度量张量g是对称的,所以那个计算顺序无所谓)

v\cdot__ 作相同的事,

于是,我们就知道如何获取协向量v\cdot__ 的分量,
因此,作为一种替代表示法,
不将“g”与下标 j 写一起,*********就是如图:
 
就是这两边相等,可以选择其中一种表达式。

总而言之,向量V可以写为: 

它的伙伴协向量v\cdot__可以写为:

v_{i}v^{j}之间的转换方式是对度量张量进行求和:     、         

需要注意的一点是:

只有在极其特殊的情况下,v_{i}v^{i} 才会相等  。  上标跟下标的意义是不同的。

上面我们找到了从向量V找到其对应的伙伴协向量V*的方法,

如果我们要反过来呢? 怎么找?

从左往右可以通过度量张量g ,  而 从右往左呢?

我们现在对度量张量定义其 逆。

对上面的所有 式子进行归总:

升高、降低索引的操作  就是 指 将变量的上下标之间的转化, 
对于 , 就是利用度量张量(协变度量张量,因其分量是协变的),将v^{j} 变为了 v_{i}  ,也就是降低索引操作。

对于 , 就是利用逆度量张量(逆变度量张量, 因其分量是逆变的),将v_{j}变为了v^{i} , 也就是升高索引操作。

这种升高和降低操作不仅适用于向量和协向量分量,也可升高和降低其他张量分量的索引,

以下面张量Q为例:

事实证明,可在任何的张量分量上进行降低和升高索引操作,

向量的对应伙伴 协向量除了v\cdot__这种表示方法 , 还有其他的表示方法, 
 

最后总结:

就那么  

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值