12.Bilinear Forms

本文探讨了度量张量作为双线性形式的一种特殊情况,强调了它们之间的关系:度量张量是对称的,满足交换性和长度自守性,而并非所有双线性形式都有这些特性。两者是包含关系,但并非所有双线性形式都能成为有效的度量张量。
摘要由CSDN通过智能技术生成

Bilinear Forms  双线性形式

Metric Tensor  度量张量是双线性形式的一种。

在学习张量积之前,先讨论一般的线性形式

回顾一下上一节学的 Metric Tensor

度量张量所表示的矩阵 是个 对称矩阵。,

度量张量的性质:

双线性形式  定义:

B_{ij}是矩阵分量

当说B是双线性时,这是因为它是一种形式,其中每个单独的输入都是线性的,而另一个输入保持不变。

可以看到,度量张量 和 双线性形式  都遵循两个协变变换规则,它们具有相似的特性。
但是,它们实际上并不相同,
那么,它们的区别在哪?
 

度量张量 只是 双线性形式的  一个具体的情况,
事实上,度量张量具有 其他双线性形式  可能没有的两个额外的属性,

1. 由于度量张量表示的矩阵是对称的,使得 g_{ij} = g_{ji}, 
因此,

可以看出,度量张量中输入向量的顺序无关,因此,使用度量张量,可在 不更改任何内容的情况下交换输入,   但我们不一定能用双线性形式做到这一点,。

 2. 度量张量测量向量长度时,我们将相同的向量放入两次,我们总是得到>=0的结果,

但对于某些双线性形式来说,这不一定正确。

所以,某些双线性形式是有效的度量张量,而另一些不是。
所以,双线性形式的一些例子可能是有效的度量张量,

 度量张量和双线性形式 就是 被包含  和 包含 的关系。

最后总结:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值