Bilinear Forms 双线性形式
Metric Tensor 度量张量是双线性形式的一种。
在学习张量积之前,先讨论一般的线性形式
回顾一下上一节学的 Metric Tensor
度量张量所表示的矩阵 是个 对称矩阵。,
度量张量的性质:
双线性形式 定义:
是矩阵分量
当说B是双线性时,这是因为它是一种形式,其中每个单独的输入都是线性的,而另一个输入保持不变。
可以看到,度量张量 和 双线性形式 都遵循两个协变变换规则,它们具有相似的特性。
但是,它们实际上并不相同,
那么,它们的区别在哪?
度量张量 只是 双线性形式的 一个具体的情况,
事实上,度量张量具有 其他双线性形式 可能没有的两个额外的属性,
1. 由于度量张量表示的矩阵是对称的,使得 ,
因此,
可以看出,度量张量中输入向量的顺序无关,因此,使用度量张量,可在 不更改任何内容的情况下交换输入, 但我们不一定能用双线性形式做到这一点,。
2. 度量张量测量向量长度时,我们将相同的向量放入两次,我们总是得到>=0的结果,
但对于某些双线性形式来说,这不一定正确。
所以,某些双线性形式是有效的度量张量,而另一些不是。
所以,双线性形式的一些例子可能是有效的度量张量,
度量张量和双线性形式 就是 被包含 和 包含 的关系。
最后总结: