三种积分法的总结

在上一篇中,已经对高等数学的不定积分部分的知识框架进行了梳理,总的概括就是两个概念+三个方法+三类常见可积函数积分问题,这篇会结合例题对三种换元法加以实战练习,做到对大多数的不定积分问题可以更快更准确的解决。

注:上篇列出了20个常用的不定积分公式,准确记忆它们是基础。然而,仅仅依赖这些基础公式所能解决的问题是有限的,因此,掌握以下三类积分法能帮助我们解决更多不定积分问题。

第一类换元积分法(凑)

第一类换元积分法也被称为凑微分法,把被积函数f(x)拆分为f(g(x))和g(x)导数的乘积,这样积分的时候就可以把前面的g(x)导数放到微分号后面,达到简化的结果,简单来说,就是把前面的东西找一部分放到后边去。

我们先看标准的数学定义:

设f(u)有原函数F(u),即存在

{F}'{\left ( u \right )}=f\left ( u\right )\int f\left ( u \right )du=F\left ( u \right )+C

如果u=g\left ( x \right ),且g\left ( x \right )可微,根据复合函数微分法有:

dF\left [ g\left ( x \right ) \right ]=f\left ( g\left ( x \right ) \right ){g}'\left ( x \right )dx

根据不定积分的定义有:

\int f\left ( u \right )du=\int f\left (g \left ( x \right ) \right ){g}' \left ( x\right )dx =F\left [g \left ( x \right ) \right ]+C

直接上例题,会对第一类积分法有更好理解:

【例1】\int 2xe^{x^{2}}dx.

解:

\int 2xe^{x^{2}}dx=\int e^{x^{2}}\left ( \left ( x^{2} \right ){}'\right )dx=\int e^{x^{2}}d\left ( x^{2}\right )

不妨令u=x^{2},则原式=

\int e^{u}du=e{^{u}}+C=e^{^{x^{2}}}+C

注:不定积分求解的最终结果是一族函数,不是一个函数,一定要加上常数C。

【例2】\int \frac{\sin \left ( \sqrt{x} \right )}{\sqrt{x}}dx

解:

\int \frac{\sin\left ( \sqrt{x} \right )}{\sqrt{x}}dx=2\int \frac{\sin \left ( \sqrt{x}\right )}{2\sqrt{x}}dx=2\int \sin \left ( \sqrt{x} \right )d\left ( \sqrt{x} \right )=-2\cos \sqrt{x}+C


第二类换元积分法(换)

第一换元法是在函数的基础上凑出另一个函数,而第二换元法是通过变量代换来构造出新的函数求解后再带回原自变量,我们先来熟悉一下定义:

x=g \left ( t \right )是单调的可导函数,并且g'\left ( t \right )\neq 0.又设f\left [ g\left ( t \right ) \right ]g'\left ( t \right )具有原函数,则有换元公式

\int f\left ( x \right )dx=\int f\left [ g\left ( t \right ) \right ]g{\left ( t \right )}'dt=F\left ( t \right )_{t=g^{-1}\left ( x \right )}+C

看到这个第二类换元积分法的定义还是很抽象,还是通过例题来熟悉;不严谨的来说,利用第二类积分法主要用来解决无理函数问题,也就是存在根号的函数式,通过三角代换或者其他代换可以起到消除根号,简化被积函数的效果。

下面分析常见的三类三角代换:

三角代换1——x=a·sint/a·cost

如果被积函数含有\sqrt{a^{2}-x^{2}},通常会用令x=a\sin t或者x=a\cos t划去根式,这个三角代换中利用的最基本的式子是\sin ^{2}x+\cos ^{2}x=1,我们通过下面例子来感受一下这个代换的威力!

【例3】求  \int \sqrt{a^{2}-x^{2}}dx

我们先把x=a\sin t代入原式

\int \sqrt{a^{2}-a^{2}sint^{2}}d\left ( asint \right )=\int a\cos x\cdot a\cos tdt=a^{2}\int \cos ^{2}tdt

化简到这里我们已经完全解决了根号问题,被积函数变成了初等函数,但是cost的幂是二次的,我们不妨利用倍角公式降幂后进行求解:

a^{2}\int \frac{1+cos2t}{2}dt=\frac{a^{2}}{2}\left ( \int dt+\int \cos 2t \right )dt=\frac{a^{2}}{2}t+\frac{a^{2}}{2}\sin t\cos t+C

最后一步千万不要忘记回代t=arcsin\frac{x}{a},则所求积分为

\int \sqrt{a^{2}-x^{2}}dx=\frac{a^{2}}{2}\arcsin \frac{x}{a}+\frac{1}{2}x\sqrt{a^{2}-x^{2}}+C


三角代换2——x=a·tant

如果被积函数含有\sqrt{x^{2}+a^{2}},通常会用令x=a\tan t划去根式,这个三角代换中利用的最基本的式子是1+tan^{2}x=sec^{2}x,看例题!

【例4】求   \int \frac{dx}{\sqrt{x^{2}+a^{2}}}

我们先把x=a\tan t代入原式

\int \frac{d\left ( a\tan t \right )}{\sqrt{a^{2}\tan ^{2}t+a^{2}}}=\int \frac{a\cdot \sec ^{2}t}{a\cdot \sec t}dt=\int \sec tdt

其实这里的sect的不定积分是常见积分表里面的,一定要记住!这里就不证明了!

\int\sec tdt=ln\left | \sec t+\tan t \right |+C

已知x=a\tan t,等价于 \tan t=\frac{x}{a},那么\sec t又该如何表示呢?我们不妨画个三角形来看看

当我们把三角形的三条边都标清楚后,就很容易得到\sec t=\frac{\sqrt{x^{2}+a^{2}}}{a}

于是所得积分为:

\int \frac{dx}{\sqrt{x^{2}+a^{2}}}=\ln \left ( \frac{x}{a} +\frac{\sqrt{x^{2}+a^{2}}}{a}\right )+C_{1}=\ln \left ( x+\sqrt{x^{2}+a^{2}} \right )+C

其中 C=C_{1}+\ln a,因为不定积分的结果是一族函数,最终结果都可以用任意常数C来代替。


三角代换3——x=a·sect

如果被积函数含有\sqrt{x^{2}-a^{2}},通常会用令x=a\sec t划去根式,这个换元和上面方法的证明过程完全类似,例题留作大家练习喔!

【例5】求  \int \frac{dx}{\sqrt{x^{2}-a^{2}}}


其他代换

上面提到的三角代换是很常见的,但不是说第二类换元积分法只能用三角代换解决问题,比如下面例题,用 x=t^{6} 进行代换,仍然达到消除根号的目的。

【例6】求  \int \frac{dx}{\sqrt{x}+\sqrt[3]{x}}

对于这个题目中含有2次和3次根号,我们不妨取它们的最小公倍数6次,令x=t^{6},带入:

                                       \int \frac{6t^{5}}{t^{3}+t^{2}}dt=6\int \left ( t^{2}-t +1-\frac{1}{t+1}\right )dt

                      =6\left ( \frac{t^{3}}{3}-\frac{t^{2}}{2}+t-\ln \left | t+1 \right | \right )+C

                                       \overset{t=\sqrt[6]{x}}{\rightarrow}2\sqrt{x}-3\sqrt[3]{x}+6\sqrt[6]{x}-6\ln \left | \sqrt[6]{x} +1\right |+C

当然关于第二类积分法的换元技巧还有很多,有时间我再补充!

分部积分法

对于分部积分法,它是适用于被积函数为两类不同函数乘积的形式,它的定义比较简单

设函数 u=u\left ( x \right ) 和v=v\left ( x \right )具有连续导数,则两个函数乘积的不定积分为:

\int udv=u\cdot v-\int vdu

下面我们就总结几类经典题型来看看到底哪些不定积分适用于分部积分法,到底应该如何用?

第一类:被积函数为多项式正(余)弦函数/指数函数

第一类题型为被积函数为多项式乘三角函数/指数函数,形式如下:

①. \int P_{n}\left ( x \right )\cdot e^{ax}dx

②. \int P_{n}\left ( x \right )\cdot \sin xdx

③. \int P_{n}\left ( x \right )\cdot \cos xdx

对于这种题型我们一般把三角函数/指数函数作为v,放到微分号后面,上例题!

【例7】 \int x^{2}e^{x}dx

\int x^{2}e^{x}dx=\int x^{2}de^{x}= x^{2}e^{x}-\int e^{x}dx^{2}

下面我们只需对减号后面的部分再次进行一次分部积分就解决了

\int x^{2}e^{x}dx=x^{2}e^{x}-2\int xe^{x}dx

                =x^{2}e^{x}-2\int xde^{x}

                               =x^{2}e^{x}-2\left ( xe^{x}-e^{x} \right )+C

                         =e^{x}\left ( x^{2}-2x+2 \right )+C


第二类:被积函数为多项式反三角函数/对数函数

第一类题型为被积函数为多项式乘三角函数/指数函数,形式如下:

①. \int P_{n}\left ( x \right )\cdot \ln xdx

②. \int P_{n}\left ( x \right )\cdot \arcsin xdx

③. \int P_{n}\left ( x \right )\cdot \arctan xdx

对于这种题型我们一般把多项式(幂函数)作为v,放到微分号后面,上例题!

【例8】 \int x\arctan xdx

\int x \arctan xdx=\frac{1}{2}\int \arctan xd\left ( x^{2} \right )=\frac{x^{2}}{2}\arctan x-\frac{1}{2}\int \frac{x^{2}}{1+x^{2}}dx

 =\frac{x^{2}}{2}\arctan x-\frac{1}{2}\int \left ( 1-\frac{1}{1+x^{2}} \right )dx

       =\frac{x^{2}}{2}\arctan x-\frac{1}{2}\left ( x-\arctan x \right )+C

                                              =\frac{1}{2}\left ( x^{2}+1 \right )\arctan x-\frac{1}{2}x+C

第三类:被积函数为对数函数三角函数

①. \int e^{ax}\cdot \sin \beta xdx

②. \int e^{ax}\cdot \cos \beta xdx

这类题型也比较典型,通常先把谁放后面使用分部积分法都可以,多次使用分部积分法,会凑出一个原式的二倍,移项,两端同除以2即可,上例题!

【例9】 \int e^{x}\sin xdx

\int e^{x}\sin xdx=\int \sin xde^{x}=e^{x}\sin x-\int e^{x}d\sin x

 =e^{x}\sin x-\int e^{x}\cos xdx

                  =e^{x}\sin x-e^{x}\cos x+\int e^{x}d\cos x

                    =e^{x}\sin x-e^{x}\cos x-\int e^{x}\sin xdx

移项,两边同除以2得

\int e^{x}\sin xdx=\frac{1}{2}e^{x}\left ( \sin x-\cos x \right )+C


对于不定积分的题型还有很多,掌握这些是最基础的,学完或者复习完这些基础知识、题型,一定要多多做题,把握手感,那这次关于不定积分的方法分享就结束啦,下次见!

PS:如果有错误,欢迎大家指出哦!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼好运~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值