同济《高等数学》——第三章 微分中值定理与导数的应用

本文详细梳理了微分中值定理(包括Rolle、Lagrange、Cauchy定理)及其与导数的联系,强调了闭区间连续和开区间可导的重要性。此外,文章还介绍了泰勒中值定理在高阶导数与原函数关系中的作用,以及皮亚诺型和拉格朗日型泰勒公式的区别。
摘要由CSDN通过智能技术生成

大家好,这次分享的是同济《高等数学》——第三章 微分中值定理与导数的应用的知识梳理。第一部分微分中值定理是理论基础,第二部分是对函数的形态进行研究。在微分学中,微分中值定理的伟大意义就在于建立了导数原函数的联系,也是建立了局部(区间内一点的导数f{}'\left ( \xi \right ))和整体(整个区间\frac{f\left ( b \right )-f\left (a\right )}{b-a})的联系。

准确的来说,Rolle、Lagrange、Cauchy定理建立了一阶导数和原函数的关系,对于高阶导数和原函数的关系会用Taylor中值定理,下面我们由浅入深的研究微分中值定理部分。

首先分析一下费马引理,罗尔中值定理,拉格朗日中值定理,柯西中值定理之间关系:

Fermat\rightarrow Rolle\rightleftharpoons Lagrange\rightleftharpoons Cauchy

最明显可以发现Rolle定理相比Lagrange定理多了一个端点值相等f\left ( a \right )=f\left ( b \right )的条件,lagrange的定理条件更一般化,说明Lagrange定理是Rolle定理的推广,Rolle定理是Lagrange定理的特例;当我们把Lagrange定理的x,y换成参数方程x=\varphi \left ( t \right ),y= \phi \left ( t \right ),就得到了Cauchy定理,这说明Cauchy定理是Lagrange定理的推广,Lagrange定理是Cauchy定理的特例,三个中值定理的关系层层递进。

【碎碎念】关于为什么要强调闭区间连续,开区间可导,不妨想想证明中值定理的证明过程中用到了哪两个基本定理,我就从这两个定理着手分析,第一个是最值定理,严格来说有限闭区间上的最值定理,为什么不是开区间呢?y=tanx就是一个很好的例子,所以如果想要在区间[a,b]内找到最值点,闭区间连续是一定要满足的;第二个就是费马引理要求区间内的一点x有定义且可导,若为闭区间可导,区间端点就只可能存在左或右极限,端点处不满足,我们都知道可导的充要条件是左右导数存在且相等,若开区间可导就很好的满足了区间内所有点都可导,因此强调闭区间连续,开区间可导是很有必要的。

下面我们分析一下高阶导数和原函数的关系——泰勒中值定理,泰勒中值定理的伟大意义不仅仅建构了高阶导数原函数的关系,也是利用了多项式逼近一般原函数,是以直代曲的核心思想体现。泰勒公式分为皮亚诺型拉格朗日型,两者的泰勒公式条件不同,余项不同,皮亚诺型要求在点x0处n阶可导,拉格朗日型要求点x0在区间(a,b)上n+1阶可导,因此皮亚诺型也被称为局部泰勒公式,在x0的邻域内误差比较小,一般可以用来研究极限,极值问题;拉格朗日型要求点x0在区间(a,b)上n+1阶可导,因此拉格朗日型也被称为整体泰勒公式,一般可以用来研究最值,不等式问题。

知识框架

知识梳理

  • 12
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼好运~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值