同济《高等数学》——第三章 微分中值定理与导数的应用

大家好,这次分享的是同济《高等数学》——第三章 微分中值定理与导数的应用的知识梳理。第一部分微分中值定理是理论基础,第二部分是对函数的形态进行研究。在微分学中,微分中值定理的伟大意义就在于建立了导数原函数的联系,也是建立了局部(区间内一点的导数f{}'\left ( \xi \right ))和整体(整个区间\frac{f\left ( b \right )-f\left (a\right )}{b-a})的联系。

准确的来说,Rolle、Lagrange、Cauchy定理建立了一阶导数和原函数的关系,对于高阶导数和原函数的关系会用Taylor中值定理,下面我们由浅入深的研究微分中值定理部分。

首先分析一下费马引理,罗尔中值定理,拉格朗日中值定理,柯西中值定理之间关系:

Fermat\rightarrow Rolle\rightleftharpoons Lagrange\rightleftharpoons Cauchy

最明显可以发现Rolle定理相比Lagrange定理多了一个端点值相等f\left ( a \right )=f\left ( b \right )的条件,lagrange的定理条件更一般化,说明Lagrange定理是Rolle定理的推广,Rolle定理是Lagrange定理的特例;当我们把Lagrange定理的x,y换成参数方程x=\varphi \left ( t \right ),y= \phi \left ( t \right ),就得到了Cauchy定理,这说明Cauchy定理是Lagrange定理的推广,Lagrange定理是Cauchy定理的特例,三个中值定理的关系层层递进。

【碎碎念】关于为什么要强调闭区间连续,开区间可导,不妨想想证明中值定理的证明过程中用到了哪两个基本定理,我就从这两个定理着手分析,第一个是最值定理,严格来说有限闭区间上的最值定理,为什么不是开区间呢?y=tanx就是一个很好的例子,所以如果想要在区间[a,b]内找到最值点,闭区间连续是一定要满足的;第二个就是费马引理要求区间内的一点x有定义且可导,若为闭区间可导,区间端点就只可能存在左或右极限,端点处不满足,我们都知道可导的充要条件是左右导数存在且相等,若开区间可导就很好的满足了区间内所有点都可导,因此强调闭区间连续,开区间可导是很有必要的。

下面我们分析一下高阶导数和原函数的关系——泰勒中值定理,泰勒中值定理的伟大意义不仅仅建构了高阶导数原函数的关系,也是利用了多项式逼近一般原函数,是以直代曲的核心思想体现。泰勒公式分为皮亚诺型拉格朗日型,两者的泰勒公式条件不同,余项不同,皮亚诺型要求在点x0处n阶可导,拉格朗日型要求点x0在区间(a,b)上n+1阶可导,因此皮亚诺型也被称为局部泰勒公式,在x0的邻域内误差比较小,一般可以用来研究极限,极值问题;拉格朗日型要求点x0在区间(a,b)上n+1阶可导,因此拉格朗日型也被称为整体泰勒公式,一般可以用来研究最值,不等式问题。

知识框架

知识梳理

  • 11
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 积分中值定理指出,在一个定义域内的某一函数的积分,可以通过在这个定义域中某一点上取函数值与定义域长度的乘积来近似计算,而微分中值定理则认为,在某一点上,函数的导数可以近似由函数在该点左右两点上取值的差值除以它们之间的距离所得。 ### 回答2: 积分中值定理和微分中值定理是微积分中两个重要的定理。 积分中值定理是指如果函数$f(x)$在闭区间$[a, b]$上连续且可积,那么存在一个$\xi$在区间$(a, b)$内,使得$\int_a^b f(x)dx = f(\xi)(b-a)$。简单说,积分中值定理表明在一个连续函数的定积分中,一定存在某个点,使得该点的函数值与其定义域上的平均值相等。 微分中值定理是指如果函数$f(x)$在闭区间$[a, b]$上可导且连续,那么存在一个$\xi$在开区间$(a, b)$内,使得$f'(\xi) = \frac{f(b)-f(a)}{b-a}$。简单说,微分中值定理表明在一个可导函数的导数中,一定存在某个点满足导数等于该函数在闭区间上的斜率。 两个定理的区别主要在于对象和定理的表达方式上。积分中值定理是关于函数在闭区间上定积分的取值与函数在内部某个点上的函数值之间的关系。而微分中值定理则是关于函数在闭区间上的导函数与函数在内部某个点上的斜率之间的关系。 ### 回答3: 积分中值定理和微分中值定理都属于微积分中的重要定理,但它们的应用对象不同,所表示的意义也有所差异。 积分中值定理是用来描述定积分的性质的定理,它指出如果一个函数在闭区间[a,b]上连续,并且满足一定的条件,那么在[a,b]上必然存在一点c,使得函数在c处的取值等于整个区间上函数的平均值。具体来说,对于函数f(x)在闭区间[a,b]上,存在一点c,使得∫[a,b]f(x)dx = (b-a)f(c)。 微分中值定理是用来描述导数的性质的定理,它指出如果一个函数在闭区间[a,b]上是可导的,并且满足一定的条件,那么在(a,b)内必然存在一点c,使得函数在c处的导数等于函数在该区间上两个端点的函数值的差与对应的导数的乘积的比值。具体来说,对于函数f(x)在闭区间[a,b]上可导,存在一点c,使得f'(c) = (f(b)-f(a))/(b-a)。 综上所述,积分中值定理和微分中值定理的不同主要体现在它们的应用对象和所代表的意义上。积分中值定理描述了整个区间上函数的平均值与函数在某一点处的关系,而微分中值定理描述了函数在某一区间上的导数与函数在该区间内两个端点处函数值的关系。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼好运~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值