判断方法(核心思想)
咋就是说 最最要肯定是那句话,fx越小越收敛! 家人们一定好好把握这句话,简直万剑归宗! 极限全是这个思想! 趋于无穷小,低价+高阶 肯定低阶 趋于无穷大 肯定高阶! 太妙了
幂函数,按照无穷区间和无穷函数分为p型积分和q型积分,p>1和q<1时,积分收敛,其余情况发散。
e^x 无论取无穷大还是无穷小,他对于幂函数来说都是高阶的存在,所以只需要按照极限的高低阶来判断就行,例如在∞的比较上,极限是无穷,发散;在无穷小的比较上极限为0,收敛。
ln^a x 只要不是与x的一次方一起出现在分母,就可以省略掉,如果出现上述情况,那么就使用a按照无穷区间的规则来进行判定,此时不考虑积分属于无穷区间还是无穷函数;单独出现时,跟e^x相反,他被视作低阶的存在,对应为p和q型积分,但他的p和q恒小于一,这就导致无穷区间上发散,无穷函数上收敛