62. 不同路径
难度中等1481
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 1:

输入:m = 3, n = 7 输出:28
示例 2:
输入:m = 3, n = 2 输出:3 解释: 从左上角开始,总共有 3 条路径可以到达右下角。 1. 向右 -> 向下 -> 向下 2. 向下 -> 向下 -> 向右 3. 向下 -> 向右 -> 向下
示例 3:
输入:m = 7, n = 3 输出:28
示例 4:
输入:m = 3, n = 3 输出:6
这是一道典型的动态规划,对于第i行第j列的格子到达他的路径只有左侧格子和上方的格子,将每个格子的路径数看做一个二维数组,即
a[i][j]=a[i-1[j]+a[i][j-1]
且需要注意的是当位于边界时的选择至于一种,所以通过循环将a[0][j],a[i][0]设为1
从第1行第1列开始动态规划,输出a[m-1][n-1]即为总路径数。
int uniquePaths(int m, int n) {
int a[m][n];
for (int i = 0; i < m; i++) {
a[i][0] = 1;
}
for (int j = 0; j < n; j++) {
a[0][j] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
a[i][j] = a[i - 1][j] + a[i][j - 1];
}
}
return a[m - 1][n - 1];
}
难度中等1301
给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例 1:

输入:grid = [[1,3,1],[1,5,1],[4,2,1]] 输出:7 解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]] 输出:12
这一题与上面的不同路径是十分类似的,同样是使用动态规划来解题。
这里我们需要先设置一个dp数组来存储每个格子的最小和
同样的对于边界上的仅有一种选择,所以
dp[i][0] = dp[i - 1][0] + grid[i][0];
dp[0][j] = dp[0][j - 1] + grid[0][j];
那么对于一般情况便使用dp方程,自身的值加上上一步两格子的最小值便是该格子和的最小值
dp[i][j] = fmin(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
int minPathSum(int** grid, int gridSize, int* gridColSize) {
int rows = gridSize, columns = gridColSize[0];
if (rows == 0 || columns == 0) {
return 0;
}
int dp[rows][columns];
dp[0][0] = grid[0][0];
for (int i = 1; i < rows; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int j = 1; j < columns; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
for (int i = 1; i < rows; i++) {
for (int j = 1; j < columns; j++) {
dp[i][j] = fmin(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[rows - 1][columns - 1];
}
这篇博客探讨了如何使用动态规划解决两种网格路径问题:一种是从左上角到右下角的不同路径计数,另一种是寻找网格中数字总和最小的路径。在每种情况下,博主都介绍了动态规划的状态转移方程,并强调了边界条件的重要性。
2017

被折叠的 条评论
为什么被折叠?



