题目一、某项工程的活动明细如下表(时间:周;费用:万元):项目总预算由原先的60万元增加到63万元,根据下表,在预算约束下该工程最快能完成时间为()周,所需项目总费用为()万元。
解题思路:
根据题意可以先把正常进度和赶工两种情况的关键路径找出来再分别来计算项目总预算。
1、简易版时标网络图(一个格子表示2周):
通过网络图得出正常进度的关键路径是ACD为12周,赶工有两条关键路径是AB和ACD为8周
2、根据关键路径计算项目总预算
项目总预算=(直接费用+项目间接费用)
正常:
项目总预算=10+15+12+8+(1 x 12)=57
赶工:
项目总预算=15+17+13+11+(1 x 8)=64
再来回顾题意,项目总预算由原先的60万元增加到63万元,可以得出赶工的项目总预算64万元已经超出63万元,所以不能直接使用赶工来完成,而正常进度花费时间又太久,项目总预算有剩余。题目需要解决问题是在预算约束下该工程最快能完成时间为多少周,所需项目总费用为多少万元。
所以,需要结合正常进度与赶工两种情况来考虑方案,通过对比数据可以发现:
1)正常进度情况下活动A所需时间3周在赶工情况下变成2周,时间减少了一周,但直接费用由10万元增加15万元,说明活动A赶工成本为5万元一周;活动B正常进度8周赶工只用6周,时间减少了两周,直接费用由15万元增加到17万元,说明活动B赶工成本为1万元一周;依次类推发现,活动C与活动D赶工成本分别为每周1万元和1.5万元。
每周的赶工成本 =(赶工直接费用-正常直接费用)/(正常所需时间-赶工所需时间)
2)由此可以得出结论:活动A赶工成本最高为每周5万元,活动BC为每周1万元,活动D为每周1.5万元;所以除了活动A不使用赶工,其他活动都可以使用赶工。重新来画关键路径图则为9周,再来计算项目总预算:
项目总预算=10+17+13+11+(1 x 9)=60
最终答案:在项目总预算为63万元的约束下,该工程最快能完成时间为9周,所需项目总费用为60万元。
题目二、某项目由并行的3个活动甲、乙和丙组成,为活动甲分配3人5天可以完成,活动乙分配6人7天可以完成,活动丙分配4人2天可以完成,活动完成后人员可再调配。在此情况下,项目最短工期为( )天,此时人员最少配置为( )人。
解题思路:根据题意找出关键路径
(简易版时标网络图,一个格子表示2天)
1)从图中可以得出,活动乙所需时间最长为7天,则关键路径为7天。
2)活动甲与丙只要在七天内任意时间完成即可,而活动乙所需的6人7天是贯穿整个项目周期内不能挪动。根据题意发现活动甲需要3人5天,丙需要4人2天,活动甲与丙所需时间加起来正好也是7天,所以在最短工期要求下结合资源平滑的思想,活动丙的4人2天做完后,分出3人在余下的5天去完成活动甲,即所需人员最少为6 + 4 = 10 人。
最终答案:项目最短工期为7天,此时人员最少配置为10人。
题目三:下图表示某项目各个活动关系及乐观、最可能、悲观完成时间,假设各活动的三种完成时间服从β分布,按照三点估算法该项目标准差为 3.2天,则项目在 ( ) 完成的概率为 95%。
A:42.6 天到 55.4 天
B:45.8 天到 52.2 天
C:61.4 天到74.6天
D:64.7 天到 71.3天
解题思路:先求出每个活动的完成时间,然后再找出项目的关键路径时长,最后再算出时间区间范围
1、根据三点估算法公式来计算出每个活动的完成时间
期望时间 =(乐观时间 + 4 x 最可能时间 + 悲观时间)/ 6
活动A =(8 + 4 x 12 + 16)/6 = 12
活动B =(15 + 4 x 18 + 27)/6 = 19
活动C =(5 + 4 x 7 + 9)/6 = 7
活动D =(11 + 4 x 13 + 14)/6 = 12.8
活动E =(4 + 4 x 5 + 12)/6 = 6
活动F =(5 + 4 x 13 + 15)/6 = 12
2、找出项目的关键路径
(简易版时标网络图,一个格子表示6天)
根据上图可以得出项目关键路径为ABEF=12+19+6+12=49
3、参照西格玛β分布模型求出时间区间
根据途中可以看出概率为 95%为2倍的标准差,则可以计算:
左侧 = 关键路径 - 标准差 x 2 = 49 - 3.2 x 2 = 42.6
右侧 = 关键路径 + 标准差 x 2 = 49 + 3.2 x 2 = 55.4
解题思路:项目在42.6 天 ~ 55.4天完成的概率为 95%,选A。
题目一:某系统集成项目包含了三个软件模块,现在估算项目成本时,项目经理考虑到其中的模块A技术成熟,已在以前类似项目中多次使用并成功交付,所以项目经理忽略了A的开发成本,只给A预留了5万元,以防意外发生。然后估算了B的成本为50万元,C的成本为30万元,应急储备为10万元,三者集成成本为5万元,并预留了项目的10万元管理储备。如果你是项目组成员,该项目的成本基准是()万元,项目预算是()万元,项目开始执行后,当项目的进度绩效指数SPI为0.6时,项目实际花费70万元,超出预算10万元,如果不加以纠偏,请根据当前项目进展,估算该项目的完工估算值(EAC)为()万元。
解题思路:(以下出现的整型数值中未写单位名称的默认统一为万元)
1、项目的成本基准是()万元,项目预算是()万元。
首先来回顾一下成本基准、项目预算的概念与关联关系:
(1)成本基准与项目预算:成本基准是经过批准的、按时间段分配的项目预算,不包括任何管理储备,只有通过正式的变更控制程序才能变更,用作与实际结果进行比较的依据。成本基准是不同进度活动经批准的预算的总和。项目预算和成本基准的各个组成部分。先汇总各项目活动的成本估算及其应急储备,得到相关工作包的成本。然后汇总各工作包的成本估算及其应急储备,得到控制账户的成本。再汇总各控制账户的成本,得到成本基准。由于成本基准中的成本估算与进度活动直接关联,因此就可按时间段分配成本基准,得到一条S曲线。最后,在成本基准之上增加管理储备,得到项目预算。当出现有必要动用管理储备的变更时,则应该在获得变更控制过程的批准之后,把适量的管理储备移入成本基准中。
简单来说就是,成本基准是经过批准的项目预算,不包含管理储备,包含应急储备,在成本基准加上管理储备就是项目预算。
(2)通过上述概念再来结合题意,可以理解为除了管理储备以外的其他成本之和就是该项目的成本基准,最后加上管理储备就得到项目预算,即:
成本基准 = A模块成本 + B模块成本 + C模块成本 + 应急储备 + 三者集成成本
= 5 + 50 + 30 + 10 + 5= 100
项目预算 = 成本基准 + 管理储备
= 100 + 10= 110
因此,项目的成本基准是(100)万元,项目预算是(110)万元。
2、项目开始执行后,当项目的进度绩效指数SPI为0.6时,项目实际花费70万元,超出预算10万元,如果不加以纠偏,请根据当前项目进展,估算该项目的完工估算值(EAC)为()万元。
(1)根据题意得知,此处项目的完工预算(EAC)值为典型性偏差,需理解挣值分析相关概念及熟记计算公式后,可参照公式算出最终结果。即:
完工估算值(EAC)= AC + ETC
实际成本(AC):项目实际花费70万元,则AC=70;
完工尚需估算(ETC):ETC有典型与非典型两种计算,题目已经说明不加以纠偏,则为ETC典型偏差,即:ETC = (BAC - EV) / CPI,非典型情况下不需要除以CPI;
根据公式 ETC = (BAC - EV) / CPI,
完工预算(BAC):为将要执行的工作所建立的全部预算总和(总的PV),包含应急储备,不包括管理储备。根据概念可以理解成本基准等同于完工预算,因此得出结论 BAC = 100;
结合题目得知该项目的进度绩效指数SPI为0.6,得出公式 SPI = EV / PV,
计划值(PV):已知完工预算BAC为总的PV是100万元,当前进度SPI为0.6,那么得出计划值 PV = 60
挣值(EV):已知PV = 60,SPI = 0.6,即
SPI = EV / PV
0.6 = EV / 60
EV = 0.6 x 60
EV = 36
成本绩效指数(CPI):已知EV = 36,AC = 70,即
CPI = EV / AC
= 36 / 70≈ 0.51
(2)根据(1)计算,已知BAC为100万元,EV为36万元,CPI约等于0.51,即
ETC = (BAC - EV) / CPI
=(100 - 36)/ 0.51≈ 125.49
EAC = AC + ETC
= 70 + 125.49= 195.49
最终答案:该项目的成本基准是(100)万元,项目预算是(110)万元,估算该项目的完工估算值(EAC)为(195.49)万元