最小生成树——operator_

前言

突然想复习一波图论。。。

最小生成树:口语化的说,就是在原图中选 n − 1 n-1 n1条边组成一棵树,使这几条边权值和最小

1.kruskal

这是一个基于边的算法。

对所有边排序,从最小的边开始枚举,用并查集维护现在选定的集合中点的联通情况,若一条边的两个端点不属于同一集合,就 m e r g e merge merge并加入该边边权

正确性显然。

代码如下 ↓ \downarrow

int f[N];
struct qwq{int u,v,w;} e1[N];//输入时存储
bool cmp(qwq& x,qwq& y) {return x.w<y.w;}
void init(int n) {for(int i=1;i<=n;i++) f[i]=i;}
int find(int x) {return (f[x]==x?x:f[x]=find(f[x]));}
void merge(int x,int y) {f[find(x)]=find(y);}
void kruskal() {
	init(n);
	sort(e1+1,e1+m+1,cmp);
	for(int i=1;i<=m;i++) {
		int u=e1[i].u,v=e1[i].v,w=e1[i].w;
		if(find(u)!=find(v))
			merge(u,v);
	}
}

复杂度 O ( m l o g m ) O(mlogm) O(mlogm)

2.prim

这是一个基于点的算法。

d [ u ] d[u] d[u]表示的是u对于现在已经选定的树的最小距离。每次找 d [ ] d[] d[]最小且未被选定的 u u u,将其加入集合,并用它更新每个点

正确性依旧显然。

代码如下 ↓ \downarrow

bool vis[N];
int d[N];
void prim() {
	memset(d,0x3f,sizeof(d));
	d[1]=0;
	for(int k=1;k<=n;k++) {
		int u=0,minn=1e9;
		for(int i=1;i<=n;i++)
			if(vis[i]==0&&d[i]<minn)
				u=i,minn=d[i];
		vis[u]=1;
		for(int i=h[u];i;i=e[i].nxt) {
			int v=e[i].v,w=e[i].w;
			if(vis[v]==0)
				d[v]=min(d[v],w);
		}
	}
}

复杂度 O ( n 2 ) O(n^2) O(n2)

事实上和 d i j k s t r a dijkstra dijkstra一样, p r i m prim prim也有堆(优先队列)优化版,但由于 p r i m prim prim本身个人感觉就没有 k r u s k a l kruskal kruskal应用广,所以就没去写优化版。

3.总结

2 2 2种算法都是贪心的,可以根据是稀疏图还是稠密图选择合适的算法,在我做的题中好像 k r u s k a l kruskal kruskal应用广泛一点。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值