【图像处理】关于振铃效应(Ringingeffect)的相关探讨——与吉布斯现象的关联性

1 振铃效应(Ringingeffect)

        振铃效应(Ringingeffect)是影响复原图像质量的众多因素之一,是由于在图像复原中选取了不适当的图像模型造成的,振铃效应产生的直接原因是图像退化过程中信息量的丢失,尤其是高频信息的丢失,其严重降低了复原图像的质量,并且使得难于对复原图像进行后续处理。(来自百度百科)

        “图像处理中,对一幅图像进行滤波处理,若选用的频域滤波器具有陡峭的变化,则会使滤波图像产生‘振铃’,就是指输出图像的灰度剧烈变化处产生的震荡,就好像钟被敲击后产生的空气震荡。”(如下图)

(色差越大,出现色差地方越多,则振铃效应越明显)

% 读取图像
img = imread('1.jpg');

% 转换图像为灰度图
gray_img = rgb2gray(img);

% 计算图像的傅里叶变换
F = fftshift(fft2(double(gray_img)));

% 创建幅频低通滤波器
[M, N] = size(gray_img);
D0 = 30; % 截止频率
H = zer
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值